Show simple item record

dc.contributor.authorCarter, Chet
dc.creatorCarter, Cheten_US
dc.date.accessioned2011-12-06T13:50:51Z
dc.date.available2011-12-06T13:50:51Z
dc.date.issued2006en_US
dc.identifier.urihttp://hdl.handle.net/10150/195405
dc.description.abstractThis dissertation has focused on the study of the ITO/organic heterojunction and the chemistries therein, it proposes appropriate strategies that enhance the interfacial physical and electronic properties for charge injection with application to organic thin-layer devices. We focused on four major aspects of this work: i) To characterize the ITO surface and chemistries that may be pertinent to interaction with adjacent organic layers in a device configuration. This developed a working model of surface and provided a foundation for modification strategies. Characterization of the electronic properties of the surface indicate less than 5% of the geometrical surface is responsible for the bulk of current flow while the rest is electrically inactive. ii) To determine the extent to which these chemistries are variable and propose circumstances where compositional changes can occur. It is shown that the surface chemistry of ITO is heterogeneous and possible very dynamic with respect to the surrounding environment. iii) To propose a strategy for modification of the interface. Modification of ITO surfaces by small molecules containing carboxylic acid functionalities is investigated. Enhancements in the electron transfer rate coefficient were realized after modification of the ITO electrode. The enhancements are found to stem from a light etching mechanism. Additionally, an elecro-catalytic effect was observed with some of the modifiers. iv) Apply these modifications to organic light emitting diodes (OLEDs) and organic photovoltaic devices (OPVs). Enhancements seen in solution electrochemical experiments are indicative of the enhancements seen for solid state devices. Modifications resulted in substantially lower leakage currents (3 orders of magnitude in some cases) as well as nearly doubling the efficiency.An additional chapter describes the creation and characterization of electrochemically grown polymer nano-structures based on blazed angle diffraction gratings. The discussion details the micro-contact printing process and the electro-catalytic growth of the conductive polymers PANI and PEDOT to form diffraction grating structures in their own right. The resulting diffraction efficiency of these structures is shown to be sensitive to environmental conditions outlining possible uses as chemical sensors. This is demonstrated by utilizing these structures as working pH and potentiometric sensors based on the changing diffraction efficiency.
dc.language.isoenen_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.subjectOLEDen_US
dc.subjectOPVen_US
dc.subjectITOen_US
dc.subjectIndium tin oxideen_US
dc.titleModification of Indium-Tin Oxide Surfaces: Enhancement of Solution Electron Transfer Rates and Efficiencies of Organic Thin-Layer Devicesen_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.contributor.chairArmstrong, Neal R.en_US
dc.identifier.oclc659746497en_US
thesis.degree.grantorUniversity of Arizonaen_US
thesis.degree.leveldoctoralen_US
dc.contributor.committeememberEvans, Dennis H.en_US
dc.contributor.committeememberSaavedra, S. Scotten_US
dc.contributor.committeememberMcGrath, Dominic V.en_US
dc.identifier.proquest1930en_US
thesis.degree.disciplineChemistryen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.namePh.D.en_US
refterms.dateFOA2018-08-25T07:41:12Z
html.description.abstractThis dissertation has focused on the study of the ITO/organic heterojunction and the chemistries therein, it proposes appropriate strategies that enhance the interfacial physical and electronic properties for charge injection with application to organic thin-layer devices. We focused on four major aspects of this work: i) To characterize the ITO surface and chemistries that may be pertinent to interaction with adjacent organic layers in a device configuration. This developed a working model of surface and provided a foundation for modification strategies. Characterization of the electronic properties of the surface indicate less than 5% of the geometrical surface is responsible for the bulk of current flow while the rest is electrically inactive. ii) To determine the extent to which these chemistries are variable and propose circumstances where compositional changes can occur. It is shown that the surface chemistry of ITO is heterogeneous and possible very dynamic with respect to the surrounding environment. iii) To propose a strategy for modification of the interface. Modification of ITO surfaces by small molecules containing carboxylic acid functionalities is investigated. Enhancements in the electron transfer rate coefficient were realized after modification of the ITO electrode. The enhancements are found to stem from a light etching mechanism. Additionally, an elecro-catalytic effect was observed with some of the modifiers. iv) Apply these modifications to organic light emitting diodes (OLEDs) and organic photovoltaic devices (OPVs). Enhancements seen in solution electrochemical experiments are indicative of the enhancements seen for solid state devices. Modifications resulted in substantially lower leakage currents (3 orders of magnitude in some cases) as well as nearly doubling the efficiency.An additional chapter describes the creation and characterization of electrochemically grown polymer nano-structures based on blazed angle diffraction gratings. The discussion details the micro-contact printing process and the electro-catalytic growth of the conductive polymers PANI and PEDOT to form diffraction grating structures in their own right. The resulting diffraction efficiency of these structures is shown to be sensitive to environmental conditions outlining possible uses as chemical sensors. This is demonstrated by utilizing these structures as working pH and potentiometric sensors based on the changing diffraction efficiency.


Files in this item

Thumbnail
Name:
azu_etd_1930_sip1_m.pdf
Size:
4.294Mb
Format:
PDF
Description:
azu_etd_1930_sip1_m.pdf

This item appears in the following Collection(s)

Show simple item record