Name:
azu_etd_11142_sip1_m.pdf
Size:
390.5Kb
Format:
PDF
Description:
azu_etd_11142_sip1_m.pdf
Author
Aldhubiab, Bandar EssaIssue Date
2010Advisor
Yalkowsky, Samuel H.Committee Chair
Yalkowsky, Samuel H.
Metadata
Show full item recordPublisher
The University of Arizona.Rights
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.Abstract
Three solution models: ideal, regular, and quasi- regular, were used to predict the melting point of eutectic mixtures containing Polyethylene Glycol (PEG) 400 and PEG 4000 with nine poorly water- soluble drugs: 1-naphthoic acid, estrone, griseofulvin, indomethacin, phenobarbital, paracetamol, salicylic acid, salicylamide and naproxen. PEG 400 was physically mixed with drug at different weight percentages to determine the melting points of the pure drugs and the melting point depression using Differential Scanning Calorimetry (DSC). The PEG 4000 eutectic mixtures were processed by the solvent evaporation method. In both the PEG 400 and PEG 4000 study, the quasi-regular solution model accounted for the most realistic conditions of entropy and enthalpy of the mixtures compared to ideal and regular solution models.Type
textElectronic Dissertation
Degree Name
Ph.D.Degree Level
doctoralDegree Program
Pharmaceutical SciencesGraduate College