• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Synthesis of UQ10 Analogs, Measurement of their Midpoint Potentials and their Effects on the Activity of WT and T61V bc1 Complexes from Rhodobacter sphaeroides

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_11128_sip1_m.pdf
    Size:
    3.571Mb
    Format:
    PDF
    Description:
    azu_etd_11128_sip1_m.pdf
    Download
    Author
    Cedeno, Diana
    Issue Date
    2010
    Keywords
    complex III
    cytochrome
    quinone
    Advisor
    Walker, F. Ann
    Committee Chair
    Walker, F. Ann
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Cytochrome bc1 (Complex III) is an important enzyme that takes part in the respiratory electron transport chain in vertebrates, yeast, and many bacteria. The complex exists as a dimer, in which each monomer contains three catalytic subunits: cytochrome c1, cytochrome b and the Rieske iron-sulfur protein or ISP. Within the inner mitochondrial membranes of eukaryotes, Complex III catalyzes the transfer of two electrons from ubiquinol (UQH2) to cytochrome c, a water-soluble protein, through a process called the modified Q-cycle mechanism. Under very specific conditions, such as mutations within cytochrome b, disruption of the normal mechanism leads to bypass reactions, including the formation of superoxide and reactive oxygen species. We have sought to restore the activity of a mutant of cytochrome b (T61V) by modifying UQH2, the natural substrate for this enzyme. The structure of the oxidized form, UQ consists of a p-quinone head group and a hydrophobic all-trans polyprenyl unit (tail) that can vary in length, depending on the species in which it is found. The present work highlights modifications to the substituent groups attached to the quinone head and to the all-trans polyprenyl tail. Since the midpoint potentials of these molecules are pH dependent, cyclic voltammetry and spectroelectrochemistry studies in buffered aqueous solutions have been carried out on these molecules (analogs of UQ10). Modifications of the substituent groups attached to the quinone head gave the molecules a different ability to either donate or receive electrons, while modifications to the length of the tail either increased or decreased the solubility of these molecules inside the phospholipid membrane. We examined the normal activity and the production of superoxide in wild-type and (T61V) of bacterial Rhodobacter sphaeroides in the presence of these analogs. We confirmed that to prevent damaging side reactions, normal operation of the Q-cycle requires a fairly narrow window of reduction potentials with respect to the ubiquinol substrate.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Chemistry
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.