• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Response of Martian Ground Ice to Orbit-Induced Climate Change

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_1487_sip1_m.pdf
    Size:
    15.87Mb
    Format:
    PDF
    Description:
    azu_etd_1487_sip1_m.pdf
    Download
    Author
    Chamberlain, Matthew Allyn
    Issue Date
    2006
    Keywords
    Mars
    ground ice
    climate change
    thermal model
    Committee Chair
    Boynton, William V.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    A thermal model is developed to find the distribution of stable near-surface ground ice on Mars that is in diffusive contact with the atmosphere for past and present epochs. Variations in the orbit of Mars are able to drive climate changes that affect both surface temperatures and atmospheric water content so the distribution of ground ice will vary significantly in past epochs. A technique is developed to correct the average water vapor density above the surface for depletion due to diurnal frost formation. Also presented is a simple model to estimate the atmospheric water content, based on the water vapor carrying capacity of the atmosphere over water ice on the martian surface.Maps of the distribution of ground ice are generated for the present epoch of Mars with varying amounts of water vapor in the atmosphere. The water vapor depletion scheme restricts the extent of stable ground ice as more water is put into the atmosphere so that ice never becomes stable at low latitudes. As the position of the perihelion varies, the extent of ground ice changes several degrees in the latitudinal extent, primarily in the northern hemisphere. The extent of ground ice is sensitive to the obliquity of Mars, however high obliquities are still not able to make ground ice stable at low latitudes. Finding ice is never stable at low latitudes is consistent with the lack of terrain softening at low latitudes and models that indicate Mars had high obliquities for much of its history.Also presented is the first L-band spectrum of an irregular satellite from the outer Solar System. Spectra of Himalia were obtained with the Visual and Infrared Mapping Spectrometer onboard the Cassini spacecraft. The Himalia spectrum is essentially featureless, showing a slight red slope and a suggestion of an absorption feature at 3 microns that would indicate the presence of water. Better measurements of the spectrum of Himalia, particularly in the region of the apparent 3-micron band, could help determine whether water is present, and if so, in what form.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Planetary Sciences
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.