• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Induced Polarization Imaging and Other Topics Associated with the Solid Immersion Lens

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_1928_sip1_m.pdf
    Size:
    4.403Mb
    Format:
    PDF
    Description:
    azu_etd_1928_sip1_m.pdf
    Download
    Author
    Chen, Tao
    Issue Date
    2006
    Advisor
    Milster, Thomas D
    Committee Chair
    Milster, Thomas D
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    An induced evanescent polarization imaging system and associated topics using a solid immersion lens (SIL) are demonstrated in this dissertation. The physics and properties of induced polarization signal of the SIL are studied by both simulations and experiments. In the SIL optical system, with a linearly-polarized incident illumination light at the entrance pupil, an orthogonal component of polarization is induced upon reflection from the SIL. This orthogonal polarization signal contains information of both air gap height h between the bottom of the SIL and the top surface of the sample. It is used as the air gap control signal in the SIL system. An experimental SIL near-field microscope setup is developed and demonstrated. A compact mechanical package is developed for a standard microscope that implements a SIL on a retractable bimorph swing arm. With the compact package mounted on an inverted microscope, far-field and near-field images are obtained at the same location by moving the SIL with the swing arm. A 25 μm diameter and 0.8 μm high circular pedestal in the center of the flat portion of the SIL is fabricated, along with a conically shaped surrounding region. The image contrast enhancement, high lateral resolution and height information are obtained with induced polarization evanescent imaging using SIL. Experiments are conducted by imaging features on a patterned Si substrate. Imaging theory is used to predict optimum orientation of high-spatial-frequency samples, and a topographical image is derived from the induced polarization image through a calibration procedure. A numerical aperture of NA=1.5 is used in the experiment. Height accuracy of ± 2nm is demonstrated with a known sample. A new lithography system employing a solid immersion lens (SIL) is proposed and primitive experiment results are presented. SIL technology is a direct-writing technique, where high resolution is easily achieved without a mask.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Optical Sciences
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.