• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Modeling Physicochemical Processes of Microbial Transport in Porous Media

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_1649_sip1_m.pdf
    Size:
    1.207Mb
    Format:
    PDF
    Description:
    azu_etd_1649_sip1_m.pdf
    Download
    Author
    Cheng, Li
    Issue Date
    2006
    Keywords
    transport
    microbial
    null
    Advisor
    Brusseau, Mark
    Committee Chair
    Brusseau, Mark
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The traditional colloid filtration model has been recognized to not fully describe transport of microorganisms in porous media under many conditions. Potential reasons for the discrepancies between colloid filtration theories and observed data are summarized into three aspects in the dissertation, including physicochemical heterogeneity, a blocking effect in the attachment process, and irreversible straining. A new transport model is developed to incorporate these non-ideal phenomena. First, both the collision-efficiency coefficient and the detachment-rate coefficient are formulated as probability density functions with log-normal distributions to represent physicochemical heterogeneity of both microbial and porous-medium grain surfaces. Second, the blocking effect is represented by appending a modified random sequential adsorption (RSA) function to the kinetic rate equation. Third, a semi-empirical equation is developed to describe the straining effect.The new model is then evaluated with a series of sensitivity analyses and illustrative applications to measured data. Sensitivity analysis on the role of probability density function (PDF) in collision efficiency and detachment rate coefficient shows that heterogeneity causes longer tailing in breakthrough curves, This effect is controlled by the implementation of the PDF in the detachment rate coefficient because the lower values among a series of detachment rate coefficients delay detachment. Straining phenonmena have received more and more attentions for protozoa transport. The new semi-empirical straining equation derived in the dissertation provides reasonable matches to the colloid data and cryptosporidium data. The Blocking effect is another process of concern for microbial transport, as shown in the analysis of microsporidium column experiments herein. The new model also proved to be successful for simulating MS-2 virus transport. The work presented will help enhance our understanding of biocolloid transport in porous media.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Hydrology
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.