• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Using Mathematical Models in Controlling the Spread of Malaria

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_1407_sip1_m.pdf
    Size:
    811.9Kb
    Format:
    PDF
    Description:
    azu_etd_1407_sip1_m.pdf
    Download
    Author
    Chitnis, Nakul Rashmin
    Issue Date
    2005
    Keywords
    mathematical modeling
    malaria
    epidemiology
    ordinary differential equations
    sensitivity analysis
    reproductive number
    Advisor
    Cushing, Jim M.
    Hyman, James M.
    Committee Chair
    Cushing, Jim M.
    Hyman, James M.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Malaria is an infectious disease, transmitted between humans through mosquito bites, that kills about two million people a year. We derive and analyze a mathematical model to better understand the transmission and spread of this disease. Our main goal is to use this model to compare intervention strategies for malaria control for two representative areas of high and low transmission. We model malaria using ordinary differential equations. We analyze the existence and stability of disease-free and endemic (malaria persisting in the population) equilibria. Key to our analysis is the definition of a reproductive number, R₀ (the number of new infections caused by one individual in an otherwise fully susceptible population through the duration of the infectious period). We prove the loss of stability of the disease-free equilibrium as R0 increases through R₀ = 1. Using global bifurcation theory developed by Rabinowitz, we show the bifurcation of endemic equilibria at R₀ = 1. This bifurcation can be either supercritical (leading to stable endemic equilibria for R₀ > 1) or subcritical (leading to stable endemic equilibria for R₀ < 1 in the presence of hysteresis). We compile two reasonable sets of values for the parameters in the model: for areas of high and low transmission. We compute sensitivity indices of R₀ and the endemic equilibrium to the parameters around the baseline values. R₀ is most sensitive to the mosquito biting rate in both high and low transmission areas. The fraction of infectious humans at the endemic equilibrium is most sensitive to the mosquito biting rate in low transmission areas, and to the human recovery rate in high transmission areas. This sensitivity analysis allows us to compare the effectiveness of different control strategies. According to our model, the most effective methods for malaria control are the use of insecticide-treated bed nets and the prompt diagnosis and treatment of infected individuals.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Applied Mathematics
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.