• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    MULTI-LEVEL ANOMALY BASED AUTONOMIC INTRUSION DETECTION SYSTEM

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_10151_sip1_m.pdf
    Size:
    4.874Mb
    Format:
    PDF
    Description:
    azu_etd_10151_sip1_m.pdf
    Download
    Author
    Al-Nashif, Youssif
    Issue Date
    2008
    Keywords
    Autonomic
    Intrusion Detection System
    Multi-Level Anomay Based
    Advisor
    Hariri, Salim
    Committee Chair
    Hariri, Salim
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The rapid growth and deployment of network technologies and Internet services has made security and management of networks a challenging research problem. This growth is accompanied by an exponential growth in the number of network attacks, which have become more complex, more organized, more dynamic, and more severe than ever. Current network protection techniques are static, slow in responding to attacks, and inefficient due to the large number of false alarms. Attack detection systems can be broadly classified as being signature-based, classification-based, or anomaly-based. In this dissertation, I present a multi-level anomaly based autonomic network defense system which can efficiently detect both known and unknown types of network attacks with a high detection rate and low false alarms. The system uses autonomic computing to automate the control and management of multi-level intrusion detection system and integrate the different components of the system. The system defends the network by detecting anomalies in network operations that may have been caused by network attacks. Like other anomaly detection systems, AND captures a profile of normal network behavior.In this dissertation, I introduce experimental results that evaluate the effectiveness and performance of the multi-level anomaly based autonomic network intrusion detection system in detecting network attacks. The system consist of monitoring modules, feature aggregation and correlation modules, behavior analysis modules, decision fusion module, global visualization module, risk and impact analysis module, action module, attack classification module, and the adaptive learning module. I have successfully implemented a prototype system based on my multi-level anomaly based approach. The experimental results and evaluation of our prototype show that our multi-level intrusion detection system can efficiently and effectively detect and protect against any type of network attacks known or unknown in real-time. Furthermore, the overhead of our approach is insignificant on the normal network operations and services.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Electrical & Computer Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.