• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    The Organized Melee: Emergence of Collective Behavior in Concentrated Suspensions of Swimming Bacteria and Associated Phenomena

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_10168_sip1_m.pdf
    Size:
    5.891Mb
    Format:
    PDF
    Description:
    azu_etd_10168_sip1_m.pdf
    Download
    Author
    Cisneros, Luis
    Issue Date
    2008
    Keywords
    Bacterial Motility
    Bio-Fluid dynamics
    Biofilms
    Collective Behavior
    Pattern Formation
    Self Propelled Particles
    Advisor
    Goldstein, Raymond E.
    Committee Chair
    Goldstein, Raymond E.
    Kessler, John O.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Suspensions of the aerobic bacteria {\it Bacilus subtilis} develop patterns and flows from the interplay of motility, chemotaxis and buoyancy.In sessile drops, such bioconvectively driven flows carry plumes down the slanted meniscus and concentrate cells at the drop edge, while in pendant drops such self-concentration occurs at the bottom.These dynamics are explained quantitatively by a mathematical model consisting of oxygen diffusion and consumption, chemotaxis, and viscous fluid dynamics.Concentrated regions in both geometries comprise nearly close-packed populations, forming the collective ``Zooming BioNematic'' (ZBN) phase.This state exhibits large-scale orientational coherence, analogous to the molecular alignment of nematic liquid crystals, coupled with remarkable spatial and temporal correlations of velocity and vorticity, as measured by both novel and standard applications of particle imaging velocimetry.To probe mechanisms leading to this phase, response of individual cells to steric stress was explored, finding that they can reverse swimming direction at spatial constrictions without turning the cell body.The consequences of this propensity to flip the flagella are quantified, showing that "forwards" and "backwards" motion are dynamically and morphologically indistinguishable.Finally, experiments and mathematical modeling show that complex flows driven by previously unknown bipolar flagellar arrangements are induced when {\it B. subtilis} are confined in a thin layer of fluid, between asymmetric boundaries.The resulting driven flow circulates around the cell body ranging over several cell diameters, in contrast to the more localized flows surrounding free swimmers.This discovery extends our knowledge of the dynamic geometry of bacteria and their flagella, and reveals new mechanisms for motility-associated molecular transport and inter-cellular communication.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Physics
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.