• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    The Protective Role of Epidermal Growth Factor in Neonatal Necrotizing Enterocolitis

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_1532_sip1_m.pdf
    Size:
    2.921Mb
    Format:
    PDF
    Description:
    azu_etd_1532_sip1_m.pdf
    Download
    Author
    Clark, Jessica Ann
    Issue Date
    2006
    Keywords
    neonatal
    intestine
    apoptosis
    tight junctions
    intestinal barrier
    Committee Chair
    Dvorak, Bohuslav
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Neonatal necrotizing enterocolitis (NEC) is the most common gastrointestinal disease in premature babies. Despite significant morbidity and mortality, the cause of this disease remains unclear and there are no preventative treatments available. Prematurity and enteral feeding of infant formula are considered to be the primary risk factors for development of NEC. Interestingly, the incidence of NEC is six to ten times lower in breast-fed babies compared to those that were formula-fed. The factors responsible for the protective effect of breast milk against NEC have not been identified, but epidermal growth factor (EGF) is one of the most promising candidates. EGF is found at high concentrations in human milk, but is not present in any commercial formula. Mothers with extremely premature babies have 50-80% higher levels of EGF in their breast milk compared to mothers with full term infants. This suggests that EGF plays an important role in the development of premature infants. Our studies have shown that supplementation of EGF into formula significantly reduces the incidence of NEC in a neonatal rat model. However, the mechanisms underlying this EGF-mediated reduction of NEC are not understood. The overall hypothesis of this dissertation is that the protective effect of EGF in NEC pathogenesis is mediated via increased expression of pro-survival genes and strengthening of the mucosal barrier. The results of the studies within this dissertation demonstrate that treatment with EGF significantly decreases intestinal epithelial cell apoptosis at the site of NEC injury by up-regulating anti-apoptotic genes and down-regulating pro-apoptotic genes. Furthermore, supplementation of formula with EGF strengthens the mucosal barrier by inducing accelerated maturation of ileal goblet cells and mucin-2 production. In addition, EGF treatment normalizes expression of crucial tight junction proteins in the ileum. Consequently, EGF treatment results in a significant decrease in intestinal paracellular permeability and improved barrier function. Results from these studies will provide significant contributions to the understanding of EGF-mediated reduction of NEC, which may lead to development of therapeutic strategies for the treatment of human NEC.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Physiological Sciences
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.