• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Engagement of Map Kinase and mTOR Signalingn by the TSC-2 Tumor Suppressor in Renal Cancer

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_10713_sip1_m.pdf
    Size:
    3.470Mb
    Format:
    PDF
    Description:
    azu_etd_10713_sip1_m.pdf
    Download
    Author
    Cohen, Jennifer Diane
    Issue Date
    2009
    Keywords
    b-raf
    cAMP
    cyclin D1
    p27
    quinol-thioether
    raf-1
    Advisor
    Lau, Serrine S
    Committee Chair
    Lau, Serrine S
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The tuberous sclerosis-2 (Tsc-2) gene product, tuberin, functions as a renal tumor suppressor. Treatment of Eker (Tsc-2 EK/+) rats and primary renal epithelial cells derived from Tsc-2 EK/+ rats (QTRRE cells) with 2,3,5-tris-(glutathion-S-yl) hydroquinone (TGHQ) results in loss of heterozygosity at the Tsc-2 locus in kidney tumors and QTRRE cells. QTRRE cells are carcinogenic in athymic nude mice. Analysis of kidney tumors formed in Tsc-2 EK/+ + rats following 8-months of TGHQ treatment reveals increases in B-Raf, Raf-1, pERK, cyclin D1, p27Kip1, 4EBP1, p-4EBP1(Thr70), p-4EBP1(Ser65), and p-4EBP1(Thr37/46) protein expression. These data establish the involvement of mTOR and MAPK signaling cascades in tuberin null tumors. Similar increases in 4EBP1 and p4EBP1 are observed in renal tumor QTRRE-xenografts in nude mice. Concomitant with increases in expression of these proteins in TGHQ-induced renal tumors, similar changes are observed in QTRRE cells, which also exhibit high ERK, B-Raf and Raf-1 kinase activity; and increased expression of cyclin D1, p27, p-4EBP1 (Thr70), p-4EBP1 (Ser65), and p-4EBP1 (Thr37/46). Manipulation of the Raf/MEK/ERK kinase cascade in QTRRE cells, with kinase inhibitors and siRNA, indicates that Raf-1/MEK/ERK participates in crosstalk with 4EBP1 to regulate translation of cyclin D1.Cyclin D1 and p27 protein levels are increased in the cytoplasm in our RCC models. In normal HK-2 cells, p27 and cyclin D1 are localized to the nucleus. Due to the instability of the cyclin D1-CDK4 complex, p27 interaction is necessary for cyclin D1-CDK4 complex assembly and stabilization in the nucleus. Manipulation of p27 protein levels in QTRRE cells with phosphodiesterase inhibitors, dibutyryl cAMP, and the proteosome inhibitor MG132, all result in a parallel increase in p27 and cyclin D1. Furthermore, p27 siRNA and sorafenib treatment both cause a decrease in p27 and cyclin D1. Further manipulation of cAMP, Rap1B, and B-Raf proteins, revealed that cAMP/PKA/Rap1B/B-Raf activation and B-Raf//ERK MAPK inhibition both modulate p27 expression and compartmental localization in tuberous sclerosis renal cancer. Phosphodiesterase inhibitors play a role in regulating the expression, degradation, and cytoplasmic localization of p27. Therefore, cytoplasmic p27-cyclin D1 mislocalization and stabilization may have an oncogenic role in the cytosol and play a crucial role in tumor formation.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Pharmacology & Toxicology
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.