• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    EVIDENCE FOR ADAPTER-MEDIATED SUBSTRATE SELECTION IN ENDOPLASMIC RETICULUM ASSOCIATED DEGRADATION

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_10409_sip1_m.pdf
    Size:
    3.360Mb
    Format:
    PDF
    Description:
    azu_etd_10409_sip1_m.pdf
    Download
    Author
    Corcoran, Kathleen M.
    Issue Date
    2009
    Keywords
    ER-associated degradation
    MHC class I
    mK3
    ubiquitin
    Advisor
    Lybarger, Lonnie P.
    Committee Chair
    Lybarger, Lonnie P.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Viruses have evolved a multitude of mechanisms, which allow immune evasion in both initial and persistent infection. Understanding the intricacies of these pathways is essential to our future ability to combat primary and reactive viral infections. The murine gamma-2 herpesvirus 68 (γHV68) encodes a protein mK3, which targets Major Histocompatibility Complex (MHC) class I heavy chains for ubiquitin-dependent proteasome degradation. MK3 is able to target and ubiquitinate MHC class I by binding to Endoplasmic Reticulum (ER) resident proteins tapasin, Transporter associated with antigen processing (TAP) 1 and TAP2 that are subunits in the complex known as the peptide-loading complex (PLC). The aforementioned characteristics of mK3 make this novel protein an excellent vehicle to study MHC class I assembly, immune evasion, and ER associated degradation (ERAD). Deepening our understanding of class I assembly and viral immune evasion will impact both the fields of immunology and virology. The homology between γHV68 and many of the human γ-herpesviruses makes this an indispensable model to clarify mechanisms that can then be applied to a broader spectrum of viruses. ERAD, an emerging field of study, is known to play a key role in numerous cellular housekeeping pathways as well as a number of disease states. Illuminating the mechanisms implicated in the mK3-mediated ubiquitination of MHC class I, specifically requirements for substrate recognition and degradation, will yield an increased understanding of cellular pathways involved in ERAD. The studies in this dissertation aim to expand our understanding of the relationship between mK3 and adapter proteins TAP/tapasin as well as mK3 and mK3-targeted substrates. The results show that TAP/tapasin act as adapter proteins by recruiting substrates for mK3. Further, mK3 ubiquitinates TAP/tapasin-associated substrates as long as the substrates have a tail greater than 6aa in length and the tail possesses an ubiquitin acceptor residue (lysine, serine or threonine). These studies also confirm that location of a protein within the PLC will determine the substrate’s susceptibility to mK3-mediated degradation. In the field of ubiquitin ligases and ERAD, these studies lend support to the concept of adapter mediated substrate recruitment.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Immunobiology
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.