• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Physicochemical aspects of colloid deposition in a rotating disk system: implications for contaminant transport

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_1208_sip1_m.pdf
    Size:
    5.944Mb
    Format:
    PDF
    Description:
    azu_etd_1208_sip1_m.pdf
    Download
    Author
    Cramer, Michael Christian
    Issue Date
    2005
    Keywords
    colloid
    enhanced transport
    rotating disk
    particle deposition
    Advisor
    Sáez, Eduardo
    Committee Chair
    Sáez, Eduardo
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Application of conventional theory of transport and deposition to small particles or large colloids, on the order of 1 micron in diameter, has received surprisingly little attention in colloid science. While the favorable deposition of colloidal particles ( < 0.5 micron diameter) has repeatedly been shown to agree with the Smoluchowski-Levich approximation for a convective-diffusion process, larger particles are known to deviate from this solute-like mass transfer behavior. The rotating disk, used in the experiments performed in this work, is a model experimental system that has been employed in the past to de-convolute and quantify the mechanisms of particle transport. Experimental evidence shows that particle transport to the rotating disk deviates from the predictions of the complete three-dimensional convective-diffusion equation, including hydrodynamic and surface-surface interaction forces, in that non-uniform deposition is observed over the surface of the disk. Fluid inertial effects, observed to be significant in capillary flow, have been suggested in the literature as an explanation of non-uniform deposition on the rotating disk. Calculations performed in this work show that while inertial lift forces are significant, they are not the dominant cause of non-uniform deposition. Instead, hydrodynamic blocking of available deposition surface area is shown to accurately describe experimental deposition profiles. The effect of particle size on surface area exclusion and hydrodynamic scattering are separately assessed to demonstrate that the blocking model is not only phenomenologically accurate, but also an important part of the mechanistic description of transport in the rotating disk system.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Chemical Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.