• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Context-Aware Resource Management

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_10879_sip1_m.pdf
    Size:
    2.602Mb
    Format:
    PDF
    Description:
    azu_etd_10879_sip1_m.pdf
    Download
    Author
    Crk, Igor
    Issue Date
    2010
    Keywords
    Energy management
    Facilitated pointing
    Hard drives
    Interactive systems
    Wireless network cards
    Advisor
    Gniady, Chris
    Committee Chair
    Gniady, Chris
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The demand for performance and resources that is placed on the system is dictated by the application alone in non-interactive environments, and by a combination of application and user interactions in interactive environments. Understanding user interaction can provide valuable information about which resources will be needed ahead of time. This leads to performance optimizations such as better resource allocations for applications that can utilize a given resource more productively, and transitioning devices to a more appropriate energy performance state before the demand arrives. The challenge is to provide a performance/energy schedule that best matches the task at hand, since keeping the device in one performance level is not energy efficient due to the continually changing demand placed on the device. This dissertation addresses the challenge of designing energy efficient systems by examining the role of user interaction in energy consumption and in providing an energy-performance schedule that adequately accommodates user demand. It is shown that system performance can be tailored to a user's pattern of interaction and it's energy-performance schedule optimized.First, a detailed design of context capture systems in Linux's X-Window System is presented with an evaluation of the associated storage and computation overheads. Due to the overall low complexity of the application window representations, the overheads of computing interaction identifiers and storing a secondary representation of the application interface within the context capture system are likewise low. Additionally, a Microsoft Windows-based context capture system leveraging the Active Accessibility framework is discussed and applied to improving the navigation of cascading pull-down menus.Secondly, this dissertation addresses the application of interaction capture in energy and delay management of Wireless Network Interface Controllers/Cards (WNICs) and hard drives. The Interaction Aware Prediction (IAP) system for WNICs is evaluated showing that the available power modes can be effectively managed to provide energy efficiency while maintaining performance. Similarly, the Interaction Aware Spin-up Prediction (IASP) uses interaction awareness to reduce or eliminate the interactive delays associated with aggressive hard disk energy management.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Computer Science
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.