• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Towards Improving Conceptual Modeling: An Examination of Common Errors and Their Underlying Reasons

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_2568_sip1_m.pdf
    Size:
    730.3Kb
    Format:
    PDF
    Description:
    azu_etd_2568_sip1_m.pdf
    Download
    Author
    Currim, Sabah
    Issue Date
    2008
    Keywords
    conceptual modeling
    Bloom's taxonomy
    databases
    learning
    training
    ER modeling
    Advisor
    Ram, Sudha
    Committee Chair
    Ram, Sudha
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Databases are a critical part of Information Technology. Following a rigorous methodology in the database lifecycle ensures the development of an effective and efficient database. Conceptual data modeling is a critical stage in the database lifecycle. However, modeling is hard and error prone. An error could be caused by multiple reasons. Finding the reasons behind errors helps explain why the error was made and thus facilitates corrective action to prevent recurrence of that type of error in the future. We examine what errors are made during conceptual data modeling and why. In particular, this research looks at expertise-related reasons behind errors. We use a theoretical approach, grounded in work from educational psychology, followed up by a survey study to validate the model. Our research approach includes the following steps: (1) measure expertise level, (2) classify kinds of errors made, (3) evaluate significance of errors, (4) predict types of errors that will be made based on expertise level, and (5) evaluate significance of each expertise level. Hypotheses testing revealed what aspects of expertise influence different types of errors. Once we better understand why expertise related errors are made, future research can design tailored training to eliminate the errors.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Management Information Systems
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.