• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Ultrasonic Field Modeling in Non-Planar and Inhomogeneous Structures Using Distributed Point Source Method

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_10056_sip1_m.pdf
    Size:
    2.227Mb
    Format:
    PDF
    Description:
    azu_etd_10056_sip1_m.pdf
    Download
    Author
    Das, Samik
    Issue Date
    2008
    Keywords
    DPSM
    Inhomogeneous
    Non-planar
    Transient
    Ultrasonic
    wave scattering
    Advisor
    Kundu, Tribikram
    Committee Chair
    Frantziskonis, George
    Kemeny, John
    Missoum, Samy
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Ultrasonic wave field is modeled inside non-planar and inhomogeneous structures using a newly developed mesh-free semi-analytical technique called Distributed Point Source Method (DPSM). Wave field inside a corrugated plate which is a non-planar structure is modeled using DPSM when the structure is excited by a bounded acoustic beam generated by a finite-size transducer. The ultrasonic field is computed both inside the plate and in the surrounding fluid medium. It is observed that the reflected beam strength is weaker for the corrugated plate in comparison to that of the flat plate, as expected. Whereas the backward scattering is found to be stronger for the corrugated plate. DPSM generated results in the surrounding fluid medium are compared with the experimental results.Ultrasonic wave field is also modeled inside inhomogeneous structures. Two types of inhomogeneity are considered - a circular hole and a damaged layered half-space. Elastic wave scattering inside a half-space containing a circular hole is first modeled using DPSM when the structure is excited with a bounded acoustic beam. Then the ultrasonic wave field is computed in presence and absence of a defect in a layered half-space. For the layered problem geometry it is shown how the layer material influences the amount of energy that propagates through the layer and that penetrates into the solid half-space when the solid structure is struck by a bounded acoustic beam. It is also shown how the presence of a crack and the material properties of the layer material affect the ultrasonic fields inside the solid and fluid media.After solving the above problems in the frequency domain the DPSM technique is extended to produce the time domain results by the Fast Fourier Transform technique. Time histories are obtained for a bounded beam striking an elastic half-space. Numerical results are generated for normal and inclined incidences, for defect-free and cracked half-spaces. A number of useful information that is hidden in the steady state response can be obtained from the transient results.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Engineering Mechanics
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.