• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    IN-SITU ELECTRO-CHEMICAL RESIDUE SENSOR AND PROCESS MODEL APPLICATION IN RINSING AND DRYING OF NANO-STRUCTURES

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_10832_sip1_m.pdf
    Size:
    6.110Mb
    Format:
    PDF
    Description:
    azu_etd_10832_sip1_m.pdf
    Download
    Author
    Dhane, Kedar
    Issue Date
    2010
    Keywords
    drying
    nano-structures
    rinsing
    sensor
    single wafer rinsing
    surface preparation end point
    Advisor
    Shadman, Farhang
    Committee Chair
    Shadman, Farhang
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Typical surface preparation consists of exposure to cleaning chemical to remove contaminants followed by rinsing with ultra-pure water which is followed by drying. Large quantities of water, various chemicals, and energy are used during rinsing and drying processes. Currently there is no in-situ metrology available to determine the cleanliness of micro- and nano-structures as these processes are taking place. This is a major technology gap and leads to over use of resources and adversely affects the throughput.Surface preparation of patterned wafers by batch processing becomes a major challenge as semiconductor fabrication moves deeper in submicron technology nodes. Many fabs have already employed single wafer tools. The main roadblock for single-wafer tools is their lower throughput. This obstacle is eased by introduction of multi chamber tools. To reduce cycle time and resource utilization during rinse and dry processes without sacrificing surface cleanliness and throughput, in-situ metrology is developed and used to compare typical single wafer spinning tools with immersion tools for rinsing of patterned wafers. This novel metrology technology includes both hardware for an in-situ measurement and software for process data analysis. Successful incorporation of this metrology will eliminate dependency on external analysis techniques such as Inductively Coupled Mass Spectroscopy (ICPMS), Scanning Electron Microscope (SEM), and Tunneling Electron Microscope (TEM), and will lead to fast response time.In this study the electro-chemical residue sensor (ECRS) was incorporated in a lab scale single-wafer spinning and single- wafer immersion tool. The ECRS was used to monitor dynamics of rinsing of various cleans such as ammonium peroxide mixture (APM), hydrochloric peroxide mixture (HPM), and sulfuric peroxide mixture (SPM). It was observed that different cleaning chemicals impact the subsequent rinse not only through adsorption and desorption but also through surface charge. The results are analyzed by using a comprehensive process model which takes into account various transport mechanisms such as adsorption, desorption, diffusion, convection, and surface charge. This novel metrology can be used at very low concentration with very high accuracy. It is used to study the effect of the key process parameters such as flow rate, spin rate, temperature, and chemical concentration.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Chemical Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.