• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    The Role of Glycogen Synthase Kinase-3 in Insulin-resistant Skeletal Muscle

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_1588_sip1_m.pdf
    Size:
    1.829Mb
    Format:
    PDF
    Description:
    azu_etd_1588_sip1_m.pdf
    Download
    Author
    Dokken, Betsy B.
    Issue Date
    2006
    Advisor
    Henriksen, Erik J.
    Committee Chair
    Henriksen, Erik J.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The metabolic syndrome is a multifaceted condition characterized by a clustering of metabolic and cardiovascular abnormalities, including insulin resistance in skeletal muscle, adipose tissue and liver, visceral adiposity, hyperinsulinemia, glucose intolerance, dyslipidemia, and essential hypertension. Those affected by this syndrome are at very high risk for developing type 2 diabetes and all of the related sequelae. Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase that contributes to the multi-factorial etiology of insulin resistance by attenuating insulin signaling in skeletal muscle, thereby decreasing glucose uptake. GSK- 3 is overactive in humans with type 2 diabetes, and in animal models of both type 2 diabetes and the metabolic syndrome (pre-diabetes). Selective GSK-3 inhibition reversed several facets of insulin resistance in the obese Zucker (fa/fa) rat, a model of pre-diabetes and the metabolic syndrome. Acute GSK-3 inhibition in skeletal muscle improved insulin-stimulated glucose uptake and glycogen synthase activity, and enhanced the functionality of key components of the insulin signaling pathway. In addition, GSK-3-β activity was decreased. Chronic selective GSK-3 inhibition improved whole-body insulin-sensitivity, reduced plasma free fatty acids, increased insulin-stimulated glucose uptake into isolated skeletal muscle, and enhanced insulin signaling in skeletal muscle. Oxidative stress is another etiologic component of insulin resistance, and type 2 diabetes is associated with higher levels of oxidant stress. Oxidant stress was induced in isolated muscle of insulin-sensitive lean Zucker rats, a model of normal glucose metabolism. Oxidant stress reduced insulin-stimulated glucose transport, glycogen synthesis, and glycogen synthase activity by ~50%, and reduced the ability of insulin to de-activate GSK-3ß. In the presence of oxidant stress, the GSK-3 inhibitor improved insulin-stimulated glucose transport, insulin stimulated glycogen synthesis, glycogen synthase activity and insulin signaling. Selective GSK-3 inhibition, therefore, partially ameliorated the skeletal muscle insulin resistance caused by oxidative stress. The results of the current study suggest that GSK-3 overactivity contributes to the multi-factorial etiology of obesity-associated insulin resistance as well as insulin resistance related to oxidative stress. Taken together, these findings support the potential of selective GSK-3 inhibition to ameliorate, in part, the insulin resistance associated with the metabolic syndrome and type 2 diabetes, and worsened by oxidative stress.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Physiological Sciences
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.