• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Spitzer's Contribution to the AGN Population

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_10200_sip1_m.pdf
    Size:
    6.177Mb
    Format:
    PDF
    Description:
    azu_etd_10200_sip1_m.pdf
    Download
    Author
    Donley, Jennifer Lynn
    Issue Date
    2009
    Keywords
    Astronomy
    Advisor
    Rieke, George
    Committee Chair
    Rieke, George
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Using large multiwavelength datasets, we study obscured AGN in the distant universe that have been missed via traditional selection techniques (e.g. UV/ optical/X-ray). To do so, we take particular advantage of the mid-IR, which is minimally affected by obscuration. We first select as AGN candidates those objects whose radio emission is significantly brighter, relative to the mid-IR, than would be predicted by the well known radio/infrared correlation, indicating that the radio emission originates in the central engine. We find that of the 27 such sources identified in the CDF-N, 60% lack solid X-ray detections and 25% lack even 2σ X-ray emission. The absorbing columns of the faint X-ray–detected objects indicate that they are obscured but unlikely to be Compton thick, whereas the radio-excess AGN which are X-ray non-detected are Compton-thick candidates. We similarly use the infrared emission to select IRAC (3.6-8.0 μm) power-law AGN. In these luminous AGN, the hot dust emission from the AGN fills in the gap in a galaxy’s SED between the 1.6 μm stellar bump and the long-wavelength dust emission feature. While sources selected in this way are more luminous than the radio-excess AGN, we find a similar X-ray detection fraction. Of the 62 power-law galaxies in the CDF-N, only 55% are detected in the X-ray, and 15% lack evidence for even weak 2σ X-ray emission. A study of their X-ray properties indicates that ∼ 75% are obscured. Finally, we test IRAC color-color and infrared-excess selection criteria. We find that while these selection techniques identify a number of obscured AGN, they may also select a significant number of star-forming galaxies. By combining only the secure AGN candidates selected via all methods discussed above, we estimate that the addition of Spitzer-selected AGN candidates to the deepest Xray selected AGN samples directly increases the number of known AGN by 54- 77%, and implies a total increase to the number of AGN of 71-94%.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Astronomy
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.