• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Genetic Studies of CLAVATA Pathway Receptor Mutants Reveal Distinctions between Pathway Components in Meristems and Fruit

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_11373_sip1_m.pdf
    Size:
    1.591Mb
    Format:
    PDF
    Description:
    azu_etd_11373_sip1_m.pdf
    Download
    Author
    Durbak, Amanda Rita
    Issue Date
    2010
    Keywords
    CLAVATA
    CORYNE
    fruit development
    receptor like kinase
    Advisor
    Tax, Frans E.
    Committee Chair
    Tax, Frans E.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The CLAVATA1 (CLV1), CLV2 and CORYNE (CRN) receptors egulate cell proliferation in shoot meristems through inhibition of WUSCHEL (WUS). Mutations in these receptors produce more floral organs. The prevailing model proposes that the extra organs are generated from enlarged floral meristems. Using forward and reverse genetics, I identified new alleles in clv1, clv2 and crn and found that most alleles only affect fruit organ number and not sepal, petal or stamen number. Analysis of inflorescence and floral meristems of clv1, clv2 and crn mutants revealed that most mutants do not have altered meristem size. I show that mutations in the ERECTA gene enhance the extra valve phenotype in crn mutants by increasing proliferation in floral meristems. Further data indicate that all mutants tested generate extra organs during fruit development and that CLV1, CLV2 and CRN expression in developing fruit overlaps with regions of increased cell division and extra organs formation. In addition, I provide evidence that CLV1 regulates the transcription factor SHOOTMERISTEMSLESS (STM) in these same regions, as mutations in STM suppress the fruit development phenotype in clv1 mutants.Analysis of the relationship between CLV pathway receptors in meristems and fruit revealed that during fruit development, all three are required to regulate fruit organ number. In meristems, I find that CLV1 appears to play a predominant role, based on evidence that the CLV1 homolog BARELY ANY MERISTEM1 (BAM1) compensates for the absence of CLV1 in the meristem but not in fruit. The fact that BAM1 does not interact genetically with CLV2 or CRN in meristems, further supports the hypothesis that BAM1/CLV1 receptor complexes play key roles in meristems. My analyses suggest that CLV3 acts specifically in the meristem pathway, and not in fruit. Also, I provide genetic data for a CLV3-related CLE gene as a ligand for the fruit-specific pathway. The work presented here provides evidence that a CLV/CRN-STM pathway acts in fruit to restrict cell division and consequently organ number via a mechanism analogous to the CLV/CRN-WUS pathway in shoot meristems, supporting the hypothesis that plants use conserved CLE/Receptor-like kinase/Homeodomain signaling module to maintain meristematic regions throughout the plant.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Plant Science
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.