• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Mathematical Programming Algorithms for Reliable Routing and Robust Evacuation Problems

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_1733_sip1_m.pdf
    Size:
    522.4Kb
    Format:
    PDF
    Description:
    azu_etd_1733_sip1_m.pdf
    Download
    Author
    Andreas, April Kramer
    Issue Date
    2006
    Keywords
    mixed-integer
    nonlinear
    optimization
    Benders decomposition
    branch-and-bound
    column generation
    Advisor
    Smith, J. Cole
    Committee Chair
    Smith, J. Cole
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Most traditional routing problems assume perfect operability of all arcs and nodes. However, when independent arc failure probabilities exist, a secondary objective must be present to retain some measure of expected functionality. We first briefly consider the reliability-constrained single-path problem, where we look for the lowest cost path that meets a reliability side constraint. This analysis enables us to then examine the reliability-constrained two-path problem, which seeks to establish two minimum-cost paths between a source and destination node wherein at least one path must remain fully operable with some threshold probability. We consider the case in which both paths must be arc-disjoint and the case in which arcs can be shared between the paths. We prove both problems to be NP-hard. We examine strategies for solving the resulting nonlinear integer program, including pruning, coefficient tightening, lifting, and branch-and-bound partitioning schemes. Next, we consider the reliable h-path routing problem, which seeks a minimum-cost set of h ≥ 2 arc-independent paths between a source and destination node, such that the probability that at least one path remains operational is sufficiently large. Our prior arc-based models and algorithms tailored for the case in which h = 2 do not extend well to the general h-path problem. Thus, we propose two alternative integer programming formulations for the h-path problem in which the variables correspond to origin-destination paths. We propose two branch-and-price-and-cut algorithms for solving these new formulations, and provide computational results to demonstrate the efficiency of these algorithms. Finally, we examine the robust design of an evacuation tree, in which evacuation is subject to capacity restrictions on arcs. Given a discrete set of disaster scenarios with varying network populations, arc capacities, transit times, and time-dependent penalty functions, we seek to establish an optimal a priori evacuation tree that minimizes the expected evacuation penalty. The solution strategy is based on Benders decomposition, and we provide effcient methods for obtaining primal and dual sub-problem solutions. We analyze techniques for strengthening the master problem formulation, thus reducing the number of master problem solutions required for the algorithm's convergence.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Systems & Industrial Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.