• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Tunable High-Power High-Brightness Vertical-External-Cavity Surface-Emitting Lasers and Their Applications

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_1603_sip1_m.pdf
    Size:
    5.642Mb
    Format:
    PDF
    Description:
    azu_etd_1603_sip1_m.pdf
    Download
    Author
    Fan, Li
    Issue Date
    2006
    Keywords
    VECSEL
    Tunable VECSEL
    Blue-green VECSEL
    Intracavity second-harmonic generation
    Birefringent filter
    Advisor
    Fallahi, Mahmoud
    Committee Chair
    Fallahi, Mahmoud
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The extraction of high power with high beam quality from semiconductor lasers has long been a goal of semiconductor laser research. Optically pumped vertical-external-cavity surface-emitting lasers (VECSELs) have already shown the potential for their high power high brightness operation. In addition, the macroscopic nature of the external cavity in these lasers makes intracavity nonlinear frequency conversion quite convenient. High-power high-brightness VECSELs with wavelength flexibility enlarge their applica-tions. The drawbacks of the VECSELs are their poor spectral characteristics, thermal-induced wavelength shift and a few-nm-wide linewidth.The objective of this dissertation is to investigate tunable high-power high-brightness VECSELs with spectral and polarization control. The low gain and microcavity reson-ance of the VECSEL are the major challenges for developing tunable high-power VECSELs with large tunability. To overcome these challenges, the V-shaped cavity, where the anti-reflection coated VECSEL chip serves as a folding mirror, and an extremely low-loss (at tuned wavelength) intracavity birefringent filter at Brewster's angle are employed to achieved the high gain, low-loss wavelength selectivity and the elimination of microcavity. This cavity results in multi-watt TEM00 VECSELs with a wavelength tuning range of 20~30 nm about 975 nm. Also the longitudinal mode discrimination introduced by birefringent filter makes the linewidth narrow down to 0.5 nm. After the tunable linearly polarized fundamental beam is achieved, the tunable blue-green VECSELs are demonstrated by using type I intracavity second-harmonic generation. The spectral control of VECSELs makes it possible to apply them as an efficient pump source for Er/Yb codoped single-mode fiber laser and to realize the spectral beam combining for multi-wavelength high- brightness power scaling.In this dissertation, theory, design, fabrication and characterization are presented. Rigorous microscopic many-body theory of the quantum well gain, based on semiconductor Bloch equations and k.p theory, is introduced. The closed loop design tool based on this theory is not only used to design the VECSEL structure, but also used as a precise on-wafer diagnostics tool by the experiment/theory comparison of the photo-luminescence. The characterization of the wafer shows that the modeling is in good agreement with the measured results.The VECSEL high power high brightness performance relies on the fabrication of the chip. The fabrication method of the VECSEL chip, which provides the optically smooth surface and good heat dissipation, is presented. The anti-reflection coating on the chip surface can significantly improve the slope efficiency of VECSEL when high reflectivity output coupler is used. Over 12-W VECSEL cw output power with 43 % slope efficiency is demonstrated at 0 oC. A beam quality factor (M^2 factor) of 1.75 is obtained at 11 W output power.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Optical Sciences
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.