• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Technological change in Southwestern Asia: Metallurgical production styles and social values during the Chalcolithic and Early Bronze Age

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_10774_sip1_m.pdf
    Size:
    39.04Mb
    Format:
    PDF
    Description:
    azu_etd_10774_sip1_m.pdf
    Download
    Author
    Frame, Lesley
    Issue Date
    2009
    Keywords
    Archaeometallurgy
    Casting
    crucible smelting
    Godin Tepe
    Seh Gabi
    Tal-i Iblis
    Committee Chair
    Vandiver, Pamela B.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The beginnings of metallurgical activity have intrigued scholars for decades. In this dissertation, I explore early metallurgical activity on the Iranian Plateau represented by the evidence at Tal-i Iblis in southern Iran, and Seh Gabi and Godin Tepe in central northern Iran. Together, these sites offer a diachronic view of metal production on the Plateau as well as a view of metallurgical activities practiced at different scales of production. The metallurgical materials from Tal-i Iblis are firmly dated to the late 6th to early 5th millennia BCE, and this corpus includes hundreds of crucible fragments excavated from multiple trash dumps. Seh Gabi and Godin Tepe offer a smaller range of production materials from the 4th through 2nd millennia BCE, but they also include a large collection of finished metal objects. These later materials differ in style and process from the Iblis debris.Thorough examination of these artifacts, combined with comparison to a series of carefully controlled casting experiments, has returned numerous significant results. The metallurgy of the Iranian Plateau does not fit the standard model of early metallurgical development. The Iblis crucibles do not reflect an early "experimental" stage in copper production. Rather, these artifacts represent a carefully controlled, production process with a narrow range of variability in both temperature and reducing atmosphere. Further, there is clear evidence for the preference of arsenical-copper alloys at Tal-i Iblis. These ancient craftspeople sought high-quality ores from a source (the Talmessi copper deposit) over 500 km from their production facility.Metallurgical production on the Iranian Plateau is also characterized by the long-term use of crucibles as the primary reaction vessel well into the 2nd millennium BCE. There are some production centers on the Iranian Plateau that see the use of furnaces during the 3rd millennium, but crucible use persists at many sites. At Godin Tepe--a site with significant evidence for contact with the Mesopotamian lowlands--variability in crucible form increases in later periods to include an Egyptian-style crucible during the 2nd millennium BCE. The presence of this crucible suggests that there was contact with foreign metallurgical processes, but the preference for small, portable reaction vessels persisted.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Materials Science & Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.