• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    High Data Rate Modulation Issues in Millimeter-Wave Metamaterials

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_2410_sip1_m.pdf
    Size:
    86.76Mb
    Format:
    PDF
    Description:
    azu_etd_2410_sip1_m.pdf
    Download
    Author
    Franson, Steven
    Issue Date
    2007
    Keywords
    antenna metamaterial millimeter-wave
    Advisor
    Ziolkowski, Richard W.
    Committee Chair
    Ziolkowski, Richard W.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    This dissertation examines the use of metamaterial structures in millimeter-wave communication systems. Metamaterials, which are composite structures that have electromagnetic properties not found in nature, have been an area of explosive growth in academic research, including applications such as electrically small antennas, sub-wavelength imaging, and negative phase velocity transmission lines. In this dissertation, several potential applications of metamaterials are investigated, including new ideas related to negative forces. The design of highly directive antennas and their use in high data rate communication systems are emphasized. At millimeter-wave frequencies, specifically in a frequency band around 60 GHz, there is an enormous amount of available unlicensed worldwide spectrum available for data transmission. These systems may benefit from the knowledge of metamaterials and their integration with antenna systems. Although there are many challenges with working at such high frequencies and the metamaterials themselves are inherently dispersive and lossy, it will be demonstrated that useful structures can be designed and fabricated at these frequencies. Metamaterial-based artificial magnetic conductors were designed and it has been shown that they can handle 'gigabit per second' data rates. Moreover, superstrate structures were also designed to achieve near zero-index of refraction properties and, as a result, highly directive 60 GHz antenna systems. These metamaterial superstrate-based patch antennas were built and tested successfully with actual 'gigabit per second' data rates. Design and practical fabrication challenges associated with these millimeter-wave applications were addressed and will be reviewed.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.