• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    TELESEISMIC STUDIES OF THE NORTH AMERICAN CORDILLERA: EVALUATING THE CHANGING STRUCTURE, COMPOSITION, AND FABRIC AFTER SUBDUCTION

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_10687_sip1_m.pdf
    Size:
    44.43Mb
    Format:
    PDF
    Description:
    azu_etd_10687_sip1_m.pdf
    Download
    Author
    Frassetto, Andrew Michael
    Issue Date
    2009
    Keywords
    Earth sciences
    Committee Chair
    Zandt, George
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The cessation of wide-scale subduction and orogenic compression during the early to mid-Cenozoic radically altered the North American Cordillera. This dissertation summarizes the results of three seismic studies, conducted in different regions of western North America, aimed at understanding how the structure and character of the crust and upper mantle relate to regions of post-subduction magmatism and persisting high elevations. Across the southern Basin and Range and Colorado Plateau teleseismic receiver functions show that only the Colorado Plateau contains thick crust commensurate with its high elevation. In contrast the southern Basin and Range has a relatively uniform crustal thickness of ~30 km, which is inadequate to support the high elevations of some of its metamorphic core complexes. We conclude that local variations in the density of the crust or upper mantle may support at least some high elevations in the southern Basin and Range. A large dataset of receiver functions collected across the Sierra Nevada show a complicated crust-mantle boundary which varies geographically, transitioning from thin crust beneath the eastern Sierra to thick crust underlying the western foothills. The thicker crust coincides with xenoliths sampling a remnant mafic-ultramafic residue produced during arc magmatism in the late Cretaceous. Modeling of receiver functions suggests that recent volcanism throughout the elevated eastern Sierra and nearby Basin and Range results from continued foundering of this dense material and its replacement with asthenosphere at relatively shallow depths in the upper mantle. In the Canadian Cordillera, regional observations of shear-wave splitting constrain the orientation and magnitude of seismic anisotropy. A pronounced and unusual trend of shear-wave splitting across the central British Columbia suggests that eastward directed flow of mantle asthenosphere fuels recent, widespread and geochemically distinct post-subduction volcanism within the northern slab window. These observations show how local and dynamic processes contribute to the support of lingering high elevations across western North America and that regions formerly associated with subduction may experience renewed magmatism due to inflow and subsequent melting of asthenospheric mantle.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Geosciences
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.