• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Leaching from Arsenic- Bearing Solid Residuals Landfill Conditions

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_1227_sip1_m.pdf
    Size:
    1.870Mb
    Format:
    PDF
    Description:
    azu_etd_1227_sip1_m.pdf
    Download
    Author
    Ghosh, Amlan
    Issue Date
    2005
    Keywords
    arsenic
    leaching
    landfill conditions
    solid sorbents
    Advisor
    Ela, Wendell P
    Committee Chair
    Ela, Wendell P
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The recent lowering of the arsenic MCL from 50 ppb to 10 ppb in 2006 will cause many utilities to implement new technologies for arsenic removal. Most of the affected utilities are expected to use adsorption onto solid sorbents for arsenic removal, especially in the arid Southwest, where conserving and re-using water is of utmost importance. This would cause the generation of more than 6 million pounds of arsenic residuals every year, which then would be disposed of in landfills. This thesis effort focuses on the testing of different aluminum and iron (hydr)-oxide based sorbents that are likely to be used for arsenic removal and assessing the behavior of these Arsenic Bearing Solid Residuals (ABSRs) under landfill conditions. It was demonstrated that the Toxicity Characteristic Leaching Procedure (TCLP) test underestimates the arsenic mobilization in landfills. Desorption of arsenic from ABSRs was quantified as a function of the range of pH and concentrations of competitive anions like phosphate, bicarbonate, sulfate and silicate and NOM found in landfills. The effect of pH is much more significant than the anions and NOM. Arsenic release due to competition of different anions is neither additive nor purely competitive. Landfill conditions were simulated inside long-term, continuous flow-through column reactors, and arsenic mobilization from sorbents was measured under those conditions. The results indicate that under reducing conditions, and in the presence of other competitive anions and high organics, microbes reduce arsenate to arsenite, which is a much more mobile species. Fe(III) is also reduced to Fe(II) under these conditions. Arsenic is transported in the particulate phase, associated with the iron, much more than in the dissolved phase. It was also observed that the sorbent itself might leach away at a faster rate than the arsenic sorbate causing a depletion of surface sites and a sudden spike in the release rate of arsenic, after a long residence time. Finally, investigation of different solid sorbents indicate, that the rate of leaching and the form of arsenic released varies widely and is independent of the respective adsorption capacities, even under similar leaching conditions.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Environmental Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.