• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Quasioptical Systems & Components for Terahertz Astronomy

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_2902_sip1_m.pdf
    Size:
    15.04Mb
    Format:
    PDF
    Description:
    azu_etd_2902_sip1_m.pdf
    Download
    Author
    Golish, Dathon R
    Issue Date
    2008
    Advisor
    Walker, Christopher K
    Committee Chair
    Walker, Christopher K
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Over the past two decades, submillimeter and terahertz astronomy has grown rapidly and become an important new window for studying the universe. This growth has been enabled by the confluence of several technologies which make the design and fabrication of high frequency single and multi-pixel heterodyne receivers possible. This dissertation reviews the development of a new generation of terahertz instrumentation at the University of Arizona, with specific emphasis on their optical components and systems. These instruments include several receivers for the Antarctic Submillimeter Telescope and Remote Observatory (formerly installed at the South Pole), including a dual-frequency 492/810 GHz receiver called Wanda, a 4-pixel 810 GHz heterodyne array called PoleSTAR, and a 1.5 THz receiver called TREND. It also covers receivers for the Heinrich Hertz Submillimeter Telescope on Mt. Graham in southern Arizona. These receivers include a 7-pixel 345 GHz heterodyne array called DesertSTAR, a 64-pixel polarimeter/bolometer system called Hertz, and a 64-pixel 345 GHz heterodyne array called SuperCam. After reviewing these instruments, concepts for the next generation of arrays and terahertz telescopes designed for the high Atacama desert, Antarctica, high altitude balloon missions, and orbiting observatories will be presented. This dissertation will also cover other contributions made to terahertz astronomy, including the creation of a Gaussian beam propagation program to help design terahertz optical systems and an integrated optics design for a waveguide interferometer to be used as an alternative to traditional bulk optics systems.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Optical Sciences
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.