• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    The Martian Near Surface Environment: Analysis of Antarctic Soils and Laboratory Experiments on Putative Martian Organics

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_10882_sip1_m.pdf
    Size:
    6.909Mb
    Format:
    PDF
    Description:
    azu_etd_10882_sip1_m.pdf
    Download
    Author
    Archer, Paul Douglas
    Issue Date
    2010
    Keywords
    Antarctica
    Habitability
    Mars
    Organics
    Phoenix Mission
    Soil Properties
    Advisor
    Smith, Peter H.
    Committee Chair
    Smith, Peter H.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Understanding the physical properties as well as the potential for organic material in the Martian near-surface environment can give us a glimpse into the history of the site with regards to water, soil formation processes, as well as the conditions necessary for life. This work is done to support the interpretation of data from the Phoenix Mars Lander as well as other past and future landed missions. The Antarctic Dry Valleys are a hyper-arid cold polar desert that is the most Mars-like place on Earth. Soils from two different soil and climate regimes are analyzed to determine their physical properties such as mineralogy, particle size, shape, color, and specific surface area. These data are used to describe the sample locations in Antarctica and infer properties of Martian soils by comparison to Antarctic sites. I find that the particle size distribution can be used to determine the water history of the site and that the behavior of soluble species in the soil can also be used to trace the movement of water through the soil and could be instructive in understanding how soil organic material is processed by the environment. Continuing with the theme of soil organic matter, we revisit the Viking conclusions with regards to organics on Mars and look at the Phoenix data on the same subject. First, we assume that Mars receives organic material from meteoritic infall. These organics will be processed by chemical oxidants as well as UV light down to 200 nm. Chemical oxidation is predicted to produce molecules such as mellitic acid, which could preserve up to 10% of the original organic mass. Using mellitic acid and other similar organic molecules, we irradiate these molecules with Mars-like ultraviolet light, analyzing the gases that come off as irradiation takes place. We find that organic molecules can survive Mars-like UV conditions as layers of UV-resistant organics build up, shielding the remaining organic material. Additionally, the gas products of irradiation depend on the composition of the original organic molecule, implying that even irradiated molecules will carry some information about the composition of the original molecule. Finally, we take this irradiated organic/soil stimulant mixture and analyze it via pyrolysis, similar to the Viking GC/MS and TEGA instruments that are the only instruments operated on Mars capable of detecting organics. We find that the pyrolysis of mellitic acid (and other similar) molecules primarily produces inorganic fragments but that the reduced carbon fragments released depend on the composition of the original organic. However, the introduction of perchlorate, discovered on Mars by the Phoenix Lander, complicates the issue by creating the conditions for molecular oxidation. The high-oxygen content and high pyrolysis temperatures lead to organic combustion during thermal analysis, meaning that, regardless of the initial composition, most soil organics will be oxidized to CO₂ during the detection process. By assuming that organic material was oxidized to CO₂ in the Phoenix and Viking samples. We show that this assumption gives organic concentrations consistent with meteoritic accumulation rates. This finding reopens the possibility for organic molecules in the near-surface environment at the Viking and Phoenix landing sites.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Planetary Sciences
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.