• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Parameter Estimation in Magnetic Resonance Imaging

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_10659_sip1_m.pdf
    Size:
    3.716Mb
    Format:
    PDF
    Description:
    azu_etd_10659_sip1_m.pdf
    Download
    Author
    Graff, Christian George
    Issue Date
    2009
    Keywords
    estimation
    image science
    MRI
    Committee Chair
    Clarkson, Eric W.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    This work concerns practical quantitative magnetic resonance (MR) imaging techniques and their implementation and use in clinical MR systems. First, background information on MR imaging is given, including the physics of the magnetic resonance, relaxation effects and how imaging is accomplished.Subsequently, the first part of this work describes the estimation of the T2 relaxation parameter from fast spin-echo (FSE) data. Various complications are considered, including partial volume and data from multiple receiver coils along with the effects of the timing parameters on the accuracy of T2 estimates. Next, the problem of classifying small (1 cm diameter) liver lesions using T2 estimates obtained from radially-acquired FSE data collected in a single breath-hold is considered. Several algorithms are proposed for obtaining lesion T2 estimates, and these algorithms are evaluated with a task-based metric, their ability to separate two classes of lesions, benign and malignant. A novel computer-generated phantom is developed for the generation of the data used in this evaluation.The second part of this work describes techniques that perform the separation of water and lipid signals while simultaneously estimating relaxation parameters that have clinical relevance. The acquisition sequences used here are Cartesian and radial versions of Gradient and Spin-Echo (GRASE). The radial GRASE technique is post-processed with a novel algorithm that estimates the T2 of the water signal independent of the lipid signal. The accuracy of this algorithm is evaluated in phantom and its potential use for detecting inflammation of the liver is evaluated using clinical data. Cartesian GRASE data is processed to obtain T2-dagger and lipid fraction estimates in bone which can be used to assess bone quality. The algorithm is tested in phantom and in vivo, and preliminary results are given.In the concluding chapter results are summarized and directions for future work are indicated.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Applied Mathematics
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.