• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DESIGN AND ANALYSIS OF A HIGH POWER MODERATE BAND RADIATOR USING A SWITCHED OSCILLATOR

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_11248_sip1_m.pdf
    Size:
    7.730Mb
    Format:
    PDF
    Description:
    azu_etd_11248_sip1_m.pdf
    Download
    Author
    Armanious, Miena Magdi Hakeem
    Issue Date
    2010
    Keywords
    High Power Electromagnetics (HPEMs)
    High Power Microwaves (HPMs)
    MATRIX Oscillators
    Mesoband Sources
    Switched Oscillators
    Advisor
    Tyo, J. Scott
    Committee Chair
    Tyo, J. Scott
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Quarter-wave switched oscillators (SWOs) are an important technology for the generation of high-power, moderate bandwidth (mesoband) wave forms. The use of SWOs in high power microwave sources has been discussed for the past 10 years [1-6], but a detailed discussion of the design of this type of oscillators for particular waveforms has been lacking. In this dissertation I develop a design methodology for a realization of SWOs, also known as MATRIX oscillators in the scientific community.A key element in the design of SWOs is the self-breakdown switch, which is created by a large electric field. In order for the switch to close as expected from the design, it is essential to manage the electrostatic field distribution inside the oscillator during the charging time. This enforces geometric constraints on the shape of the conductors inside MATRIX. At the same time, the electrodynamic operation of MATRIX is dependent on the geometry of the structure. In order to generate a geometry that satisfies both the electrostatic and electrodynamic constraints, a new approach is developed to generate this geometry using the 2-D static solution of the Laplace equation, subject to a particular set of boundary conditions. These boundary conditions are manipulated to generate equipotential lines with specific dimensions that satisfy the electrodynamic constraints. Meanwhile, these equipotential lines naturally support an electrostatic field distribution that meets the requirements for the switch operation.To study the electrodynamic aspects of MATRIX, three different (but interrelated) numerical models are built. Depending on the assumptions made in each model, different information about the electrodynamic properties of the designed SWO are obtained. In addition, the agreement and consistency between the different models, validate and give confidence in the calculated results.Another important aspect of the design process is understanding the relationship between the geometric parameters of MATRIX and the output waveforms. Using the numerical models, the relationship between the dimensions of MATRIX and its calculated resonant parameters are studied. Finally, I present a comprehensive design methodology that generates the geometry of a MATRIX system from the desired specification then calculates the radiated waveform.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Optical Sciences
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.