• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Compact Symmetric Spaces, Triangular Factorization, and Cayley Coordinates

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_1656_sip1_m.pdf
    Size:
    334.3Kb
    Format:
    PDF
    Description:
    azu_etd_1656_sip1_m.pdf
    Download
    Author
    Habermas, Derek
    Issue Date
    2006
    Keywords
    SYMMETRIC SPACES
    CAYLEY
    BIRKHOFF DECOMPOSITION
    Advisor
    Pickrell, Douglas M.
    Committee Chair
    Pickrell, Douglas M.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Let X be a simply connected, compact Riemannian symmetric space. We can represent X as the homogeneous space U/K, where U is a simply connected compact Lie group, and K is the fixed point set of an involution θ of U. Let G be the complexification of U. We consider the intersections of the image of the Cartan embedding Φ : U/K → U ⊂ G : uK → uu⁻ᶿ with the strata of the Birkhoff (or triangular, or LDU) decomposition G = ⫫(w∈W) ∑(G/w), ∑(G/w) = N⁻wHN⁺ relative to a θ-stable decomposition of the Lie algebra, g = n⁻ ⊕h ⊕ n⁺. For a generic element g in this intersection, g ∈ Φ(U/K) ∩ ∑(G/1), this yields a unique triangular factorization g = ldu. Our main contribution is to produce explicit formulas for the diagonal term d in classical cases, using Cayley coordinates (this choice of coordinate is motivated by considerations beyond sheer convenience). These formulas have several applications: 1) we can compute π₀(Φ(U/K) \ ∩ ∑(G/1) ) explicitly; 2) we can compute ʃ(Φ(U/K))ᵃΦ^-iλ (where ᵃΦ is the positive part of d) using elementary techniques in rank 1 cases; 3) they are useful in explicitly calculating Evens-Lu Poisson structures on U=K (see [Caine(2006)]). Our set-up involves choosing specific representations of the various u in su(n;C) that are compatible with θ; that is, θ fixes each of the subspaces n⁻; h; and n⁺ which, in our setup, always consist of strictly lower triangular, diagonal, and strictly upper triangular matrices, respectively. The formulas contain determinants such as det(1 + X), where X is in ip, the -1-eigenspace of θ acting on the Lie algebra u. Due to the relatively sparse nature of these matrices, these determinants are often easily calculable, and we illustrate this with many examples.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Mathematics
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.