• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Electronic Structure and Photochemistry of Molecular and Cluster Anions via Tandem Time-of-Flight Mass Spectroscopy and Photoelectron Imaging

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_2679_sip1_m.pdf
    Size:
    8.537Mb
    Format:
    PDF
    Description:
    azu_etd_2679_sip1_m.pdf
    Download
    Author
    Habteyes, Terefe Getaneh
    Issue Date
    2008
    Keywords
    photoelectron imaging
    photofragmentation
    solvation
    cluster anions
    Advisor
    Sanov, Andrei
    Committee Chair
    Sanov, Andrei
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Molecular and cluster anions have been investigated using a newly built tandem time-of-flight mass spectrometer combined with photoelectron imaging system. Solvation particularly hydration is shown not only to stabilize metastable anions such as CO₂⁻ in their ground state and impede autodetachment but also to alter the dynamics in the excited states. For instance, the 355 nm photoelectron image of mass-selected CO₂⁻(H₂O)(m) evolves from anisotropic to isotropic as m increases indicating excited state decay via electron autodetachment. Dissociation channels open at m=2 at 266 nm, resulting in O−(H₂O)m-k and CO₂⁻(H₂O)(m-k) products, the later becoming dominant as m increases. The photoelectron imaging of (CS₂)₂⁻ has revealed the coexistence of four electronic isomers: CS₂⁻•CS₂ [C(s)(₂A′)] and three covalent C₂S₄⁻ [C₂ᵥ(²B₁), D(2h)(²B(3g)), and D(2d)( ²A₁)] structures. Water-mediated intermolecular interactions have been shown to facilitate the formation of the global minimum C₂ᵥ(²B₁) structure rather than the less stable local minima C(s)(₂A′) and D(2d)(²A₁) structures that are favored in the dry source condition. In the (CS2)(n)⁻, n ≥ 3 and (CS₂)₂⁻ (H₂O)(m), m > 0 clusters, the population of the C₂ᵥ(²B₁) structure diminishes drastically due to more favorable solvent interactions with the CS2 − monomercore. Photoexcitation of the (CS₂)₂⁻ also results in the formation of CS₂⁻ and C₂S₂⁻ at 532 nm, and C₂S₂⁻, CS₂⁻, CS₃⁻, S₂⁻, and S⁻ at 355 and 266 nm. The relative yields of C₂S₂⁻ is significantly higher when (CS₂)₂⁻ is formed under wet source condition suggesting C₂ᵥ(²B₁) structure as the origin of C₂S₂⁻. An abrupt decrease in the relative yield of C₂S₂⁻ is observed upon adding CS₂ or H₂O to (CS₂)₂⁻. The CS₂⁻ based clusters are the likely origin of the S− photoproduct, while CS₃⁻ is formed through the secondary S⁻+CS₂ reaction. Novel anions (CS₂O₂⁻ and CS₃O⁻) are observed in the CS₂+O₂+e⁻ reaction. The photoelectron imaging and photodissociation results of these and other anionic products are presented. In addition, CS₂⁻•O₂ ion-neutral complex is formed depending on the conditions in the ion source. Despite the positive electron affinity of O₂, no clear signature of O₂⁻•CS₂ ion-neutral complex is seen in the photoelectron image. CO₃⁻ ion is also formed abundantly as a result of CS₂+CO₂+O₂+e⁻ reaction.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Chemistry
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.