• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Evaluation of Mouse Models of Colorectal Cancer Using Optical Coherence Tomography and Laser Induced Fluorescence Spectroscopy

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_2090_sip1_m.pdf
    Size:
    42.05Mb
    Format:
    PDF
    Description:
    azu_etd_2090_sip1_m.pdf
    Download
    Author
    Hariri, Lida Pamela
    Issue Date
    2007
    Keywords
    Biomedical Engineering
    Advisor
    Barton, Jennifer K.
    Committee Chair
    Barton, Jennifer K.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Colorectal cancer (CRC) is the third leading cause of cancer related deaths. Rodent models of CRC are useful for evaluating diagnostic tools, therapeutics, and disease progression; however, an appropriate imaging tool is needed. Optical coherence tomography (OCT) is a non-destructive imaging modality readily packaged into small diameter endoscopes. Using a near- infrared light source, structural images are generated from index of refraction mismatches with resolutions of 2-15 mm at imaging depths of up to 1.3 mm. In contrast, laser-induced fluorescence (LIF) spectroscopy provides information about biochemical composition, exciting tissues with ultraviolet to green wavelengths of light to measure fluorescence emission from endogenous fluorophores such as NADH, collagen, and porphyrin.We apply OCT and LIF to mouse models of CRC, beginning with a comprehensive ex-vivo evaluation of normal mouse gastrointestinal (GI) tract in various strains and ages and secondarily sampled colorectal neoplasia and inflammatory bowel disease (IBD) using a combined in-air OCT/LIF system. A set of characteristic features of OCT images were developed for normal esophagus, small intestine, and colon; preliminary image feature criteria were also developed for colorectal neoplasia and IBD. LIF characterized the endogenous fluorescence of mouse GI tract, with spectral features corresponding to collagen, NADH, and hemoglobin. In the IBD sample, LIF emission displayed potentially diagnostic peaks at 635 and 670 nm, consistent with increased porphyrin production by bacteria associated with IBD.Next, endoscopic OCT/LIF was evaluated in an in-vivo serial study using a prototype 2 mm diameter endoscope to image the lower colon of ApcMin and control mice. Adenoma development over OCT imaging timepoints was characterized as a progressive mucosal thickening to frank mass formation. LIF spectral comparisons revealed decreased 405 nm intensity and the presence of a peak at 680 nm over adenoma.In a final study, ultrahigh resolution OCT (UHR OCT) was used to serially image the lower colon of azoxymethane treated A/J mice to monitor CRC progression and determine OCT's capability of identifying early disease. A panel of blinded mouse colon pathology experts assigned a diagnosis based on the OCT images, which was then compared to a histological diagnosis assigned by a blinded pathologist. At the final imaging timepoint, 95% of adenomas and 23% of gastrointestinal intraepithelial neoplasia (GIN, 38% protruding GIN and 9% non-protruding GIN) were correctly diagnosed. The panel identified 68% of disease foci (95% adenoma, 76% protruding GIN, and 13% non-protruding GIN). Over the OCT imaging timepoints, disease progression followed a typical succession, with normal or GIN preceding adenoma. Endoscopic UHR OCT enabled accurate diagnosis of adenomas, identification of protruding GIN, and non-destructive visualization of CRC progression, providing a tool for cancer research in animal models.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Biomedical Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.