• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Arsenic Exposure: Effects on Oxidative Stress, Gene Regulation and the Extracellular Matrix in the Lung

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_1403_sip1_m.pdf
    Size:
    1.508Mb
    Format:
    PDF
    Description:
    azu_etd_1403_sip1_m.pdf
    Download
    Author
    Hays, Allison Marie
    Issue Date
    2005
    Advisor
    Lantz, Robert C
    Committee Chair
    Lantz, Robert C
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The mechanisms of arsenic's atherogenicity, toxicity and carcinogenicity remain to be elucidated. The lung is an established target of arsenic exposure. Therefore, the present studies address the effects of arsenic on the lung and examine the role of arsenic-induced oxidative stress as a mechanism of action. Both inhalation and ingestion exposure models were used to address this question. Since oxidative damage of DNA has been linked to cancer, we determined the synergistic ability of aerosolized arsenic and cigarette smoke to increase DNA oxidation in the lung. To test this hypothesis male Syrian golden hamsters were exposed to room air, aerosolized arsenic trioxide, cigarette smoke, or both smoke and arsenic for up to 28 days. Our results show that in the 28 day group there was a significant increase in DNA oxidation, and a significant decrease in both the reduced and total glutathione levels in the combined arsenic/ cigarette smoke group when compared with arsenic or cigarette smoke alone. Using an ingestion model, we determined whether arsenic exposure could lead to misregulation of oxidative stress sensitive genes. To investigate this hypothesis, C57BL/6 mice ingested drinking water with or without 50 ppb arsenic for five or eight weeks. Six independent Affymetrix mouse 430(A) arrays were used. We ranked differentially expressed genes in ascending order by the p-values and a limited number of altered genes were classified as redox sensitive genes and these included Hsp105, Hspa1b, Osp94 and Dnaja1. Of particular interest were the matrix genes that had been down regulated. Down regulation was validated using real time PCR. Staining for elastin, collagen and smooth muscle actin demonstrated phenotypic changes. We also identified twenty proteins as being altered (5 up- and 15 down-regulated) by 50 ppb arsenic exposure for eight weeks. Analysis of potential protein function indicated that nucleus/nuclear transport proteins, cancer related proteins, and cytoskeleton related proteins were altered by arsenic.These data, both inhalation and ingestion, support the hypothesis that arsenic acts, at least in part, through oxidative stress/redox sensitive pathways. These data provide useful molecular targets and biomarkers for future study of the sites of action of inorganic arsenic exposure.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Cell Biology & Anatomy
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.