• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Pedogenesis & Carbon Dynamics Across a Lithosequence Under Ponderosa Pine

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_11269_sip1_m.pdf
    Size:
    2.708Mb
    Format:
    PDF
    Description:
    azu_etd_11269_sip1_m.pdf
    Download
    Author
    Heckman, Katherine Ann
    Issue Date
    2010
    Keywords
    biogeochemistry
    forest soils
    organo-mineral interactions
    pedogenesis
    soil mineralogy
    soil organic carbon (SOC)
    Advisor
    Rasmussen, Craig
    Committee Chair
    Rasmussen, Craig
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Three studies were completed to investigate the influence of mineral assemblage on soil organic carbon (SOC) cycling and pedogenesis in forest soils. Two studies utilized a lithosequence of four parent materials (rhyolite, granite, basalt, limestone/volcanic cinders) under Pinus ponderosa, to explicitly quantify the contribution of parent material mineral assemblage to the character of the resulting soil. The first study explored variation in pedogenesis and elemental mass loss as a product of parent material through a combination of quantitative X-ray diffraction and elemental mass balance. Results indicated significant differences in degree of soil development, profile characteristics, and mass flux according to parent material.The second study utilized the same lithosequence of soils, but focused on organic C cycling. This study explored variation in SOC content among soils of differing mineralogy and correlations among soil physiochemical variables, SOC content, soil microbial community composition and respiration rates. Metal-humus complex and Fe-oxyhydroxide content emerged as important predictors of SOC dynamics across all parent materials, showing significant correlation with both SOC content and bacterial community composition. Results indicated that within a specific ecosystem, SOC dynamics and microbial community vary predictably with soil physicochemical variables directly related to mineralogical differences among soil parent materials.The third study focused specifically on the influence of goethite and gibbsite on dissolved organic matter characteristics and microbial communities which utilize DOM as a growth substrate. Iron and aluminum oxides were selected for this study due to their wide spread occurrence in soils and their abundance of reactive surface area, qualities which enable them to have a significant effect on SOC transported through forest soils. Results indicated that exposure to goethite and gibbsite surfaces induces significant differences in DOM quality, including changes in thermal properties, molecular structure, and concentrations of P and N. Investigation of the decomposer communities indicated that exposure to goethite and gibbsite surfaces caused significant differences in microbial community structure.These investigations emphasize the important role of mineral assemblage in shaping soil characteristics and regulating the cycling of C in soils, from the molecular scale to the pedon scale.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Soil, Water and Environmental Science
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.