• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Directly Measuring the Adhesive and Elastic Properties of Bacteria using a Surface Force Apparatus

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_1852_sip1_m.pdf
    Size:
    12.73Mb
    Format:
    PDF
    Description:
    azu_etd_1852_sip1_m.pdf
    Download
    Author
    Heo, Cheol Ho
    Issue Date
    2006
    Keywords
    surface force apparatus
    SFA
    Multiple Beam Interferometry
    bacteria
    adhesion
    compression
    Advisor
    Curry, Joan E.
    Committee Chair
    Curry, Joan E.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Bacterial adhesion is the first step of biofilm formation that plays various roles in the environment and the human body. Examples of undesirable roles of biofilm formation include metal rust, sewage sludge and bacteria-related diseases. Desirable roles are biofiltration and bioremediation.For a decade, Atomic Force Microscopy (AFM) has been the primary tool used to study the adhesion and elastic properties of individual bacteria. In this work we show it is possible to use a Surface Forces Apparatus (SFA) to measure elastic and adhesive properties of small collections of surface bound bacteria. The measurements are conducted with incomplete, patterned bacterial films and we have developed a protocol to image the contact area with AFM after the experiment. Using the SFA, we measured the force profile between a P. Aeruginosa PAO1 film and a bare mica surface. We repeated the measurement in the same contact position for up to ten days to determine the effect of desiccation on the film material properties, and then moved to the new contact area to measure the film thickness and elastic properties. A large shrinkage of the bacterial film thickness was measured during the first few days due to the bacterial film desiccation and rearrangement. The proportion of shrinkage depends on factors such as the bacterial film coverage, roughness, temperature and relative humidity. Thickness compressibility was estimated from the force curves. As a force approximation, the stress at the center of the contact (σ) and the area of the contact were estimated by applying the Hertz model. Since the film is incomplete the calculated area in contact was reduced by a factor estimated from the optical image of the contact zone. Adhesiveness was measured in receding force profiles. Maximum adhesive force was detected in the first day, due to the high capillary force, decreased by the bacterial film desiccation and increased again due to the conditioning film.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Soil, Water and Environmental Science
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.