• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    CD4+ Lymphocyte Regulation of Vascular and Cardiac Extracellular Matrix Structure and Function

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_1958_sip1_m.pdf
    Size:
    3.542Mb
    Format:
    PDF
    Description:
    azu_etd_1958_sip1_m.pdf
    Download
    Author
    Horak, Katherine Eileen
    Issue Date
    2006
    Keywords
    cardiovascular
    immunomodulation
    T-lymphocyte
    Extracellular Matrix
    heart function
    hypertension
    Advisor
    Larson, Douglas F.
    Committee Chair
    Larson, Douglas F.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Cardiovascular disease, often induced by hypertension, represents a serious health threat, is a primary cause of death worldwide, and results in altered cardiovascular function and ECM composition. Hypertension and related cardiovascular diseases are associated with immune dysfunction. This dissertation investigated the role of T-lymphocytes in modulating cardiovascular function and ECM composition as a possible therapeutic for the treatment of cardiovascular disease. Study one investigated the role of TCR peptide in the development of hypertension and subsequent cardiovascular changes in Balb/C mice. The coadminstration of TCR and L-NAME/8% NaCl reduced the effects of L-NAME/8% NaCl, decreasing blood pressure and crosslinked collagen compared to L-NAME/8% NaCl alone. Study two examined the effects of T-lymphocyte function on cardiovascular structure and function. Adoptive transfer of T-lymphocytes from C57BL/6 WT mice into C57BL/6 SCID mice induced changes in the SCID so that it resembled the WT donor, with increased percent crosslinked collagen and LOX activity. Hemodynamics in the SCID recipient resembled that of the WT and were significantly different from the sham injected SCID. Study three combined aspects of both previous studies. T-lymphocytes were adoptively transferred from hypertensive WT donors into naïve SCID recipients, who developed hypertension and cardiovascular function resembling the hypertensive donor, as well as changes in the ECM, including increased collagen crosslinking. Study four investigated the effect of strain specific T-lymphocyte polarization on hypertension induced cardiac ECM remodeling. Balb/C, C57BL/6 WT, and C57BL/6 SCID had divergent responses to L-NAME induced hypertension. Ventricular stiffness increased in Balb/C, decreased in C57 SCID and did not change in C57 WT; LOX activity changed correspondingly in all groups. The final study examined the effect of TCR administration on LOX activity and collagen crosslinking. Th1 polarization increased LOX activity and crosslinked collagen with corresponding changes in cardiovascular function. In conclusion, modulation of T-lymphocyte function alters cardiovascular function and ECM composition in pathologic and non-pathologic conditions. Immune modulation should be further investigated as a therapeutic for cardiovascular disease.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Pharmacology & Toxicology
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.