• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Functional Responses of Sonoran Desert Plant Species to Precipitation

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_1938_sip1_m.pdf
    Size:
    1.407Mb
    Format:
    PDF
    Description:
    azu_etd_1938_sip1_m.pdf
    Download
    Author
    Ignace, Danielle Denise
    Issue Date
    2006
    Keywords
    Sonoran Desert
    Precipitation Pulses
    Native and Non-native species
    Advisor
    Huxman, Travis E.
    Committee Chair
    Huxman, Travis E.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Arid and semi-arid ecosystems of the southwestern U.S. are experiencing major changes that have profound impacts for community structure and ecosystem function. First, these ecosystems are experiencing dramatic shifts in vegetation composition as a result of the invasion of non-native species. Second these ecosystems are predicted to undergo substantial shifts in climate regime, which include increases in the variability and frequency of extreme temperature and precipitation events. It is not well understood how these current and predicted changes will affect the physiological performance of different plant types in arid and semi-arid ecosystems. To address the effect of these changes, this dissertation focused on the photosynthetic response of a native and non-native grass species, and dominant shrub species to precipitation across contrasting soil surfaces in southeastern Arizona. The native and non-native grasses were exposed to wet and dry seasonal precipitation and responses to precipitation events ('pulses') were measured over the course of a summer growing season. To gain a mechanistic understanding of these patterns, the biochemical and diffusion limitations to photosynthetic function were measured over the course of a pulse period. Building on this foundation, natural stands of the non-native grass species were exposed to sequences of different sized pulse events. The physiological performance of a dominant shrub species, Larrea tridentata, was measured in order to determine the biochemical and diffusional constraints to photosynthetic function across seasons and contrasting soil surfaces. The results showed that leaf area development of these grass species affects water availability and time lags in photosynthetic response. Initial soil moisture conditions across contrasting soil surfaces influence the magnitude of photosynthetic response in grasses. Large photosynthetic responses of the non-native grass require large and consecutive precipitation pulses. Co-limitation of photosynthesis of Larrea tridentata by diffusion and biochemistry does not illustrate typical trends across seasons and soil surfaces. Overall results demonstrate the importance of determining the mechanisms responsible for observed leaf-level photosynthetic patterns across individual pulse events, seasons, and contrasting soil surfaces. This is especially important for predicting the magnitude of the response of plant communities in arid and semi-arid ecosystems to species invasions and changes in climate.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Ecology & Evolutionary Biology
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.