• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Development of a New Microporous Filter Method for the Concentration of Viruses from Water

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_10971_sip1_m.pdf
    Size:
    909.5Kb
    Format:
    PDF
    Description:
    azu_etd_10971_sip1_m.pdf
    Download
    Author
    Ikner, Luisa
    Issue Date
    2010
    Keywords
    concentration
    elution
    filter
    NanoCeram
    viruses
    water
    Committee Chair
    Gerba, Charles
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Waterborne enteric viruses are transmitted via the fecal-oral route and have been isolated from various types of water ranging from sewage to tap water. Water matrices characterized by low levels of organic material (e.g. clean surface water and tap water) contain fewer numbers of viruses than sewage and wastewater effluents. A number of methods have been developed to concentrate, elute (recover), and re-concentrate viruses from water. The goal of this dissertation is two-fold. An extensive review of the literature is provided in Appendix A that focuses on method development in the three aforementioned areas. A review of this detail has not been conducted in over two decades, and as such will contribute to the fields of water quality and environmental virology. Second, a novel and inexpensive method for the concentration of viruses (MS2 coliphage, poliovirus 1, echovirus 1, Coxsackievirus B5, and adenovirus 2) is presented in Appendix B. The method uses a new electropositive filter (comprised of nanoalumina fibers) for the capture of viruses from 20-L volumes of dechlorinated tap water. Average filter retention efficiencies for each of the viruses was ≥ 99%. Viruses that are adsorbed to filters must then be recovered (eluted). A number of inorganic solutions were evaluated for this purpose, the most effective being a moderately alkaline (pH 9.3) glycine buffered-polyphosphate solution. Secondary reconcetration of the eluates was performed using an optimized ultrafiltration method (Centricon Plus-70, Millipore, Billerica, MA), and achieved final concentrates volumes of 3.3 ± 0.3 mL. Total method efficiencies meeting the project recovery goal of ≥ 50% were obtained for each of the tested viruses except for MS2 coliphage at high input titers (45 ± 15%) and adenovirus 2 (14 ± 4%). Appendix C provides the Standard Operating Procedures, sample calculations, and detailed data for the experiments conducted. Appendix D details the steps taken towards optimizing the secondary concentration procedure in effort to meet the 50% recovery goal.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Soil, Water and Environmental Science
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.