• Analysis and Evaluation of the Performance of Surface N-Fertigation on the Yuma Mesa

      Sanchez, C. A.; Zerihun, D.; Wright, Glenn; Gibson, Rick (College of Agriculture, University of Arizona (Tucson, AZ), 2002-11)
      The application of N-fertilizers mixed with a surface irrigation stream (surface N-fertigation) is widely practiced in the Yume Mesa. Guidelines for the efficient management of surface N-fertigation systems are needed. The purpose of the work reported herein is to evaluate the relative effectiveness of existing surface N-fertigation management practices in the Yuma Mesa. This has been accomplished through the following steps: (1) a complete set of performance indices that can be used to assess the relative merit of alternative management scenarios are identified and defined and Equations as well as solutions for quantifying the performance indices are proposed; (2) surface fertigation field experiments (using Br- as a tracer) were performed in two irrigation basins at the Yuma Mesa research farm of the University of Arizona during the fall season of 2000; (3) the spatial distribution as well as the application efficiency and adequacy of Br- applied with irrigation water was determined using the performance functions proposed herein; and (4) the results were analyzed to assess the merits and limitations of existing practices.
    • Analysis of Rootstocks and New Fungicides for Control of Phytophthora Root Rot and Gummosis in Arizona Citrus Groves

      Matheron, Michael; Porchas, Martin; Wright, Glenn (College of Agriculture, University of Arizona (Tucson, AZ), 1996-09)
      Experiments were initiated to evaluate potential new citrus rootstocks for their relative tolerance or resistance to root rot and gummosis caused by Phytophthora citrophthora and P. parasitica and to determine the efficacy of potential new fungicides for disease control. In greenhouse trials conducted in 1994 and 1995, the range of root loss due to Phytophthora in the 44 different rootstocks tested ranged from 26-96 %. Rootstocks sustaining 80% or less root loss will be evaluated further to identify those with superior tolerance to Phytophthora. In growth chamber experiments, the same rootstocks were inoculated on the stem to evaluate resistance to gummosis. The length of canker that developed on these test plants ranged from 1-25 mm. Rootstocks with canker development in the range of 1-10 mm in length will be tested further to identify the most resistant selections. Laboratory studies were conducted to determine the comparative activity of Aliette, Ridomil, Dimethomorph, Fluazinam, ICIA-5504, and SM-9 at concentrations of 1, 10, 100, and 1, 000 mg/l on sporulation and growth of P. citrophthora and P. parasitica. Each of the four new molecules was either comparable or superior to Aliette or Ridomil with respect to activity on at least one component of the life cycle of the Phytophthora species tested. The results presented in this report are preliminary in nature and will be validated in future studies.
    • Applying roundup to the base of lemon tree canopies: effects on leaves, flowers, fruitlets, and yield

      McCloskey, William B.; Wright, Glenn C.; Wright, Glenn; Kilby, Mike; Department of Plant Sciences, University of Arizona, Tucson, Arizona; Dept. Plant Sciences, U. of A., Yuma Mesa Agricultural Center, Yuma, Arizona (College of Agriculture, University of Arizona (Tucson, AZ), 1999-11)
      The effect of Roundup on lemon trees (Citrus limon) was evaluated by repeatedly spraying 0.5, 0.75, 1, 1.25, and 1.5 lb. a.i./acre (corresponding to 0.5, 0.75, 1, 1.25, 1.5 quarts of Roundup Ultra/acre) on the bottom 20 to 24 inches of the tree canopies, over a three year period. The Roundup applications caused significant leaf injury in the sprayed area of the canopies and there was also significant defoliation of branches at the higher Roundup rates in all three years of the study. In 1996 after three Roundup applications, increasing rates of Roundup had no effect on flower or fruitlet production in either the sprayed or unsprayed portions of the tree canopies as judged by the counts collected from branches in each canopy zone. Similarly, in 1997 after five Roundup applications, and in 1998 after nine Roundup applications, increasing rates of Roundup had no effect on flower or fruitlet production in the sprayed or unsprayed portions of the tree canopies. Spraying Roundup on the bottom of the tree canopies did not reduce total lemon yield per tree in 1996, 1997 or 1998 at any of the application rates. In all three years of the study, increasing Roundup rates had no effect on the yield of the first or second ring picks or the percentage of the total crop picked on the first harvest date. Increasing Roundup rates also did not affect fruit size at any harvest date in 1996, 1997 or 1998. Similarly, increasing Roundup application rates did not affect fruit quality at any harvest in 1996, 1997 or 1998. Thus, there was no relationship between the rate of Roundup sprayed on the trees and yield, fruit size or quality in all three years of this study. The three years of data collected in this study indicate that accidental drift or inadvertent application of Roundup onto lemon trees when spraying weeds on the orchard floor has no significant effect on lemon tree productivity.
    • Applying Roundup to the Base of Lemon Tree Canopies: Preliminary Effects on Leaves, Flowers, Fruitlets, and Yield

      McCloskey, William B.; Wright, Glenn C.; Wright, Glenn; Kilby, Mike; Department of Plant Sciences; Yuma Mesa Agricultural Center (College of Agriculture, University of Arizona (Tucson, AZ), 1998-09)
      The effect of Roundup on lemon trees was evaluated by repeatedly spraying 0.5, 0.75, 1, 1.25, and 1.5 lb. a.i./acre on the bottom 20 to 24 inches of the tree canopies over a three year period. The Roundup applications caused significant leaf injury in the sprayed area of the canopies and there was also significant defoliation of branches at the higher Roundup rates in all three years of the study. In 1996, flower and fruitlet counts were not affected by the Roundup applications and the 1998 data were inconclusive. However, flower and fruitlet counts in 1997 in the sprayed zone of the canopy were significantly reduced by Roundup and the effect increased with increasing Roundup rate. The 1996 and 1997 yield data indicated that Roundup applied to the bottom 20 to 24 inches of the tree canopies did not significantly affect lemon yield. The preliminary data suggest that accidental drift or misapplication of Roundup on to lemon trees when spraying weeds on the orchard floor has no short-term effect on grove productivity.
    • Assessing the Risk of Insecticide Resistance in Citrus Thrips in Arizona

      Kerns, David L.; Wright, Glenn (College of Agriculture, University of Arizona (Tucson, AZ), 2004)
      Bioassay with Dimethoate, Carzol, Danitol, Baythroid and Success were conducted on citrus thrips collected from the Yuma Mesa to determine if insecticide resistance to these insecticides occurred. Low to moderate levels of resistance were detected for Dimethoate, Carzol and Danitol, and one population exhibited a high level of resistance to Baythroid. No resistance was evident for Success. Susceptibility to Success was much higher for the Yuma populations relative to populations previously reported in California.
    • Biology and Control of Coniophora Causing Decay and Decline in Arizona Citrus

      Gilbertson, R. L.; Matheron, M. E.; Bigelow, D. M.; Wright, Glenn (College of Agriculture, University of Arizona (Tucson, AZ), 1996-09)
      A field survey of mature lemon trees showed an average of 30% of trees with symptoms of brown heartwood rot caused by Coniophora sp. In vivo growth of Coniophora inoculated into branches of different types of citrus (Valencia orange, Marsh grapefruit, Orlando tangelo or Lisbon lemon) on rough lemon rootstock was significantly higher in lemon while Coniophora inoculated into Lisbon lemon wood branches on trees established on rough lemon, volkameriana, macrophylla, Cleopatra mandarin, sour orange or Troyer citrange rootstocks showed no significant differences in growth. Vegetative incompatibility trials from one mature orchard demonstrated that isolates from different trees are incompatible. In vitro fungicide trials showed that only NECTEC paste effectively reduced decay on lemon blocks 15 weeks after inoculation with Coniophora. Field fungicide trials showed that NECTEC P paste as well as the blank paste without fungicides, propiconazole at 10,000 μg /ml, imazalil at 20, 000 μg /ml or propiconazole plus imazalil in combination at 10,000 and 20,000 μg/ml, respectively, significantly inhibited the advance of fungus 7 mo. after inoculation. A second fungus isolated from brown rot in branches in younger orchards was identified as Antrodia sinuosa, a native decay fungus on conifers in Arizona.
    • Biology and Control of Lemon Tree Wood Rot Diseases

      Matheron, Michael E.; Porchas, Martin; Wright, Glenn; Gibson, Rick; University of Arizona, Yuma Agricultural Center, Yuma, AZ (College of Agriculture, University of Arizona (Tucson, AZ), 2002-11)
      Brown heartwood rot is commonly found in mature lemon groves in southwestern Arizona. Two basidiomycete fungi, Antrodia sinuosa and Coniophora eremophila, have been isolated from symptomatic trees. A major difference between the two pathogens is that Antrodia forms spore-producing fruiting bodies on infected wood within lemon groves, whereas fruiting on lemon wood infected by Coniophora has not been observed. A third fungus, a species of Nodulisporium, recently was recovered from small dead lemon tree branches with an internal white wood rot. Experiments were conducted to compare the severity of wood rot caused by each of these pathogens. The highest rates of wood decay for each pathogen occurred from May through October, when the mean length of wood decay columns for Antrodia, Coniophora and Nodulisporium was 183, 94 and 146 mm, respectively, and the mean air temperature was 29°C. In comparison, the mean length of wood decay columns from November through April for the same pathogens was 35, 18 and 38 mm, respectively, with a mean air temperature of 17°C. When inoculated with Antrodia, Coniophora or Nodulisporium, the length of wood decay columns on 40- mm-diameter branches was 26, 38 and 24% larger, respectively, compared to wood decay on 10-mm-diameter branches. The length of wood decay columns on inoculated Lisbon lemon was always numerically greater than that on tested orange, grapefruit and tangelo trees. Compared to lemon, wood decay columns ranged from 45 (on grapefruit) to 62 %( on orange) shorter when inoculated with Antrodia, 52 (on orange) to 59% (on tangelo) for Coniophora and 20 (on tangelo) to 51% (on grapefruit) for Nodulisporium. Compared to non-treated branches, suppression of wood decay in the presence of a test fungicide ranged from 28 to 79% for Antrodia, 77 to 91% for Coniophora and 71 to 92% for Nodulisporium. For each pathogen, the lowest numerical degree of wood rot suppression occurred in the presence of trifloxystrobin (Flint), whereas the highest level of suppression was observed with propiconazole (Break). On greasewood, mesquite, Palo Verde and salt cedar, the length of wood decay columns ranged from 20 to 60 mm when inoculated with Antrodia, 1 to 63 mm for Coniophora and 24 to 90 mm for Nodulisporium. For all three wood-rotting fungi, resultant wood decay columns were always much greater on lemon compared to tested desert-dwelling plants. Current disease management strategies include minimizing branch fractures and other non-pruning wounds as well as periodic inspection of trees and removal of infected branches, including physical removal of all wood infected with Antrodia from the grove site.
    • Characterization of Alternaria isolates associated with Alternaria Rot of Citrus

      Pryor, Barry; Matheron, Mike; Figuli, Patricia; Wright, Glenn (College of Agriculture, University of Arizona (Tucson, AZ), 2003)
      Alternaria rot of citrus is a serious problem in citrus production world wide. In Arizona, the disease is most commonly found in Minneola tangelos and navel oranges grown in Maricopa County. Alternaria rot occurs primarily as a stem-end rot on fruit held in cold storage. However, under optimum conditions the disease occurs as a stylar-end rot in the orchards. In Arizona, the disease can significantly reduce yield, and annual fruit losses have been estimated at 0.5 box per tree. In terms of fruit quality, this disease can be a serious problem for the fresh fruit market as well as for the processing industry because only a small amount of rot imparts a bitter flavor and small black fragments of rotted tissue spoil the appearance of the juice. The application of fungicides is the most common tactic used to reduce losses to this disease. However, to date, no consistent reduction in disease has been achieved through chemical applications. This suggests that additional information relating to the biology of the pathogen and the epidemiology of disease will be necessary for the successful development of a reliable disease management program.
    • Chemical Control and Integrated Pest Management of Woolly Whitefly

      Kerns, David L.; Wright, Glenn (College of Agriculture, University of Arizona (Tucson, AZ), 2004)
      Five foliar insecticide treatments (Esteem, two rates of Provado, two rates of Applaud, Prev-am, and Danitol + Lorsban) were evaluated for their control of woolly whitefly infestations in grapefruit. All of these products demonstrated efficacy in mitigating woolly whitefly populations. Danitol + Lorsban was the best knock-down treatment evaluated, but for sustained control, Esteem appeared to be most effective. Applaud demonstrated good activity, but the rate we tested may be a little low; the 1.0 lb/ac rate should be evaluated. Provado at 19 oz/ac was a good treatment, while the 10 oz/ac rate appears to be sub-par. Prev-am is a oil based contact material and demonstrated good initial activity. Soil injections of 16 and 32 oz/ac of Admire were very effective against WWF, and there were no detectable differences between the two rates. Previous experiments with soil injections of Admire in citrus suggested that as much as six weeks needs to pass before the trees have enough time to adequately take up the Admire from the soil. However, these data suggest that smaller trees, about 10 ft tall, may require as little as two weeks to pick up the material.
    • Chemical Control and Integrated Pest Management of Woolly Whitefly

      Kerns, David L.; Wright, Glenn (College of Agriculture, University of Arizona (Tucson, AZ), 2007-10)
      Eight foliar insecticide treatment regimes (single applications of Esteem, Danitol + Lorsban, Applaud, Provado and Prev-am, and two applications of Applaud, Provado, and Prev-Am) were evaluated for management of woolly whitefly infestations in grapefruit. All of these products demonstrated efficacy in mitigating woolly whitefly populations. Danitol + Lorsban appeared to be the best knock-down treatment evaluated, but Provado and Prev-Am also demonstrated good activity. For sustained control, all of the treatments were effective; however, Prev-Am required an additional application to achieve equivalent control. Soil injections of 16 and 32 fl-oz/ac of Admire were very effective against WWF, and there were no detectable differences between the two rates. The Admire appeared to require about 27 days after injection to demonstrate consistent activity.
    • Chemical Control of Citrus Thrips on Lemons in the Low Desert Areas of Arizona

      Kerns, David L.; Maurer, Michael; Langston, Dave; Tellez, Tony; Wright, Glenn (College of Agriculture, University of Arizona (Tucson, AZ), 1997-11)
      Insecticides were evaluated for their efficacy to citrus mealybugs on lemons at three spray gallonages, 60, 240, and 600 gallons per acre. None of the products tested exhibited any activity at 60 or 240 gallons per acre. At 600 gallons per acre, Lorsban at 6 qt/A + NR-415 oil at 1.4% v/v, Supracide at 2 pt /100 gal + Kinetic at 0.25% v/v, and Applaud at 2.0 lbs -ai/A + NR -415 oil at 1.4% v/v all demonstrated the best activity. Provado at 0.1 lbs-ai/A + NR-415 oil at 1.4 %, Danitol at 0.4 lbs-ai/A + Lorsban at 4 qt/A + NR-415 oil at 1.4% v/v, and Nexter at 0.3 lbs-ai/A + NR-415 oil at 1.4% v/v showed good activity. Weaker treatments included Agri-Mek at 10 and 20 oz/A, Knack and Difenolan. For maximum control, growers should treat before the fruit is heavily infested, and use high gallonages of spray solution at a high pressure, the spray must penetrate the waxy coating to achieve activity. If applicable, a spray oil should be included to help break up the wax. However, if Supracide is used, use a high rate without oil.
    • Citrus Orchard Floor Management 2001-2003: Comparison of a Disk, “Perfecta” Cultivator, and Weed Sensing Sprayer

      Rector, Ryan J.; McCloskey, William B.; Wright, Glenn C.; Sumner, Chris; Wright, Glenn; Department of Plant Sciences, University of Arizona, Tucson, Arizona; Department of Plant Sciences, Yuma Mesa Agricultural Center, University of Arizona, Yuma, Arizona; Yuma County Pest Abatement District, Yuma, Arizona (College of Agriculture, University of Arizona (Tucson, AZ), 2003)
      An optical weed sensing sprayer (WeedSeeker) was evaluated for making postemergence glyphosate herbicide applications in a Yuma, AZ lemon orchard. In addition, mechanical (disk and Perfecta cultivator) and chemical weed control strategies were compared. Results were fairly similar; however, the use of the WeedSeeker units combined with a preemergence herbicide (H1) increased weed control three fold compared to disking (D) and perfecta (P1). Additionally, when the WeedSeeker units were used in conjunction with preemergence herbicides, spray volume was reduced by 66% compared to a conventional sprayer and by 57% when used for postemergence applications only. There was a relationship between weed ground cover and the area sprayed by the WeedSeeker units indicating that maximum postemergence herbicide savings will occur at low weed densities or less than 10% groundcover. The use of a sprayer with an improved suspension system allowed for faster spraying speeds than were possible with the tractor mounted sprayer. Weed control was similar for the conventional and the WeedSeeker sprayer. However, yields were variable for both years. Future investigations will include efforts to develop crop budgets based on experimental operations
    • Citrus Orchard Floor Management 2001: Comparison of a Disk, "Perfecta" Cultivator, and Weed Sensing Sprayer

      McCloskey, William B.; Wright, Glenn C.; Sumner, Christopher P.; Wright, Glenn; Gibson, Rick; Department of Plant Sciences, University of Arizona, Tucson, Arizona; Department of Plant Sciences, Yuma Mesa Agricultural Center, University of Arizona, Yuma, Arizona; Yuma County Pest Abatement District, Yuma, Arizona (College of Agriculture, University of Arizona (Tucson, AZ), 2002-11)
      Mechanical (disk and Perfecta cultivator) and chemical weed control strategies were compared in a Yuma, AZ lemon orchard. In addition, an optical weed sensing sprayer (WeedSeeker) was evaluated for making post-emergence Roundup Ultramax herbicide applications. The use of pre-emergence herbicides in conjunction with the WeedSeeker spray units has the potential to significantly reduce the amount of post-emergence herbicide and water needed to spray flood irrigated citrus orchards. There was a relationship between weed ground cover and the area sprayed by the WeedSeeker units that indicated the maximum herbicide saving will occur a low weed densities. The use of the Kawasaki Mule with its superior suspension system allowed for faster spraying speeds than were possible with the tractor mounted sprayer and this also reduced spray volume per plot. Weed control was similar for the conventional and the WeedSeeker sprayers. Future investigations will include efforts to improve the estimation of percent weed groundcover, the use of higher rates of pre-emergence herbicides and the development of crop budgets based on experimental operations.
    • Citrus Peel Miner Marmara salictella Monitoring Techniques and Control Measures 1996-1997

      Maurer, M. A.; Kerns, D. L.; Tellez, T.; Wright, Glenn; Kilby, Mike (College of Agriculture, University of Arizona (Tucson, AZ), 1998-09)
      Citrus peel miner populations were monitored to evaluate various methods of trapping citrus peel miners. Observing 25 fruit per tree and 10 trees per block on the lower three feet of the tree canopy provided the best technique for determining the level of citrus peel miner infestations. The use of oleander plants, clear plates and green 3 inch diameter balls sprayed with Tangle-Trap were not effective in trapping citrus peel miner. In 1996, the first of September citrus leaf miner populations rose above the 10% infestation level. Success, Lorsban, Alert and Agri-Mek provided the highest mortality levels of citrus peel miner larvae. In citrus fruit, Success, Lorsban and Alert had the greatest efficacy of citrus peel miner larvae.
    • The Citrus Peel Miner, Marmara salictella, in Arizona Grapefruit in 1994

      Gibson, Roberta; Bacon, Dean; Langston, Dave; Kerns, David; Gibson, Richard; Wright, Glenn (College of Agriculture, University of Arizona (Tucson, AZ), 1997-11)
      The life history of the citrus peel miner was investigated. The peel miner larvae were found in low levels in grapefruit throughout the summer. In September the infestation level rose to 10%. Peel miners were also found in oleanders, mesquites, grapes and tree cottons. Peel miners were found to infest at higher levels in the skirt of the tree (less than 32. A parasitic wasp of the larval stage was discovered
    • Commercial Evaluation of M-96-015 for Control of Citrus Mealybug, Woolly Whitefly and Citrus Thrips in Lemons

      Kerns, David L.; Tellez, Tony; Wright, Glenn; Kilby, Mike (College of Agriculture, University of Arizona (Tucson, AZ), 1998-09)
      M-96-015 did not appear to effectively control woolly whitefly but does appear to kill citrus mealybug. However, as with other insecticides coverage is a problem. The real benefit of M-96-015 towards citrus mealybug would occur if it prevented their spread. However, we were not able to measure this in this study. As with previous trials, M-96-015 is an effective citrus thrips material.
    • Continued Evaluation of N Fertilization Practices for Surface Irrigated Lemons

      Sanchez, Charles A.; Wright, Glenn C.; Peralta, Manuel; Wright, Glenn; Yuma Agricultural Center (College of Agriculture, University of Arizona (Tucson, AZ), 2003)
      Much of the citrus produced in southwestern Arizona is grown on sandy soils. Because these soils have a low ion exchange capacity, are highly permeable to water, and are prone to nitrate leaching, achieving efficient N management presents a continuing challenge. A field study was conducted on a superstition sand to evaluate the response of lemons to combinations of soil and foliar applied N. Lemon yields significantly increased by soil applied N. Foliar N increased yields of lemons the first harvest at the lower soil N rates. However, there were no other significant responses to foliar N. Overall, there were few meaningful changes in fruit quality to N fertilization. The N content of the leaves increased linearly to soil N application
    • Contributions of Beneficial Soil Fungi to Drought Stress Tolerance of Young Citrus

      Fidelibus, Matthew; Martin, Chris; Stutz, Jean; Wright, Glenn; Department of Botony, Arizona State University (College of Agriculture, University of Arizona (Tucson, AZ), 1997-11)
      Four arbuscular mycorrhizal (AM) fungal isolates (Glomus sp.) from disparate edaphic conditions were screened for effects on whole -plant transpiration of juvenile 'Volkamer' lemon (Citrus volkameriana Ten. and Pasq.) plants of similar shoot mass and canopy leaf area. Mycorrhizal and non -mycorrhizal plants were grown in 8 -liter containers for 2.5 months under well- watered conditions before subjection to three consecutive soil drying episodes of increased severity (soil moisture tensions of -0.02 [still moist], -0.06 [moderately dry], and -0.08[dry] MPa respectively). Whole plant transpiration measurements were made on the last day of each soil drying episode and measurements were repeated on the first and second days after re- watering, when soil profiles were moist. The percent root length colonized by AM fungi differed among isolates. Three AM fungal isolates, Glomus sp. 25A, Glomus mosseae (Nicol. & Gerde.) Gerde. & Trappe 114C, and Glomus intraradices Schenck & Smith FL 208-3 increased root length and subsequently increased lemon plant water use. Conversely, plants inoculated with Glomus mosseae 51C did not enhance lemon plant root length nor improve plant water use compared with nonmycorrhizal control plants. Inoculating citrus with AM fungi that promote root extension may reduce plant water deficit stress under field conditions.
    • Control of Citrus Nematode with Cadusafos

      McClure, Michael A.; Schmitt, Mark E.; Wright, Glenn (College of Agriculture, University of Arizona (Tucson, AZ), 1996-09)
      Granular (Rugby 10G) and liquid (Rugby 100ME) formulations of Cadusafos were evaluated for the control of Tvlenchulus semipenetrans on mature lemon trees in a commercial citrus orchard at Yuma, Arizona. Three applications of cadusafos, with two months between applications, at the rate of 2 g a.i. /m2 reduced nematode populations to undetectable levels and increased the yield and rate of fruit maturity of 'Rosenberger' lemons. Yields were increased 12,587 kg per hectare with Rugby 100ME and 8,392 kg per hectare with Rugby 10G. Nematode populations were suppressed for at least 12 months after the last application.
    • Control of Early Woolly Whiteflies Infestations with Foliar Insecticides

      Kerns, David L.; Wright, Glenn (College of Agriculture, University of Arizona (Tucson, AZ), 2003)
      Five foliar insecticide treatments (Esteem, Provado, Applaud, Assail, and Danitol + Lorsban) were evaluated for their control of early woolly whitefly infestations in lemons. Esteem and Applaud are insect growth regulators that should have little impact on whitefly parasitoids. The impact of Provado and Assail on whitefly parasitoids is not certain, but at high rates may be detrimental, while Danitol + Lorsban will be especially harmful to parasitoids. The impact of these insecticides on woolly whitefly could not be fully determined in this trial due to the effectiveness of parasitoids, Eretmocerus comperei or E. dozieri (exact species not certain), on controlling the whiteflies in this test. However, other research (not reported here) has indicated that all of the insecticide treatments evaluated have good activity against woolly whitefly. Because parasitoids can be extremely effective in mitigating woolly whiteflies populations during the early phases of colonization, it is recommended that chemical control not be utilized until woolly whitefly colonies are common. However, previous experiences suggest that allowing woolly whitefly populations develop extremely high populations should be avoided.