• Performance of New Chemistries for Control of Powdery Mildew of Cantaloupe in 1999

      Matheron, Michael E.; Porchas, Martin; Byrne, David N.; Baciewicz, Patti (College of Agriculture, University of Arizona (Tucson, AZ), 2000-08)
      Powdery mildew on melons is an annual disease problem in Arizona. Sphaerotheca fuliginea is the plant pathogenic fungus that causes powdery mildew of cucurbits, which include cantaloupe, honeydew, watermelon, cucumber and squash. When environmental conditions are favorable, disease incidence and severity can reach economically significant levels. Factors that favor development of powdery mildew on melons include moderate temperatures and relative humidity, succulent plant growth, and reduced light intensity brought about by a dense plant canopy. Potential new fungicides were evaluated and compared to existing chemicals for control of powdery mildew of cantaloupe in a field trial conducted during the spring of 1999 at the Yuma Agricultural Center. A high level of disease had developed by crop maturity (June 29). On nontreated plants 43% of the upper leaf surface was covered by powdery mildew, whereas the level on the underside of leaves was 78%.. All of the 34 different treatments significantly reduced the level of powdery mildew on both sides of leaves, compared to nontreated plants. The best treatments among those tested with respect to disease control on the underside of leaves, where disease control is more difficult than on the tops of leaves, included Topsin+Trilogy, Benlate, Benlate+Trilogy, Quadris, A815, Topsin+Microthiol, and Topsin. The potential availability of new chemistries for management of powdery mildew of cantaloupe and other cucurbits could help improve overall control of powdery mildew as well as the implementation of fungicide resistance management strategies, which strive to minimize the risk of resistance development by the pathogen to these compounds.
    • Population Dynamics and Distribution of Aphid Species on Head Lettuce in the Yuma Valley

      Palumbo, John; Mullis, Clayton Jr.; Reyes, Francisco; Amaya, Andreas; Ledesma, Luis; Cary, Lisa; Byrne, David N.; Baciewicz, Patti (College of Agriculture, University of Arizona (Tucson, AZ), 2000-08)
      Studies were conducted in the 1999/2000 growing season to examine the population dynamics and field distribution of aphid species on winter and spring head lettuce crops. Seven, 0.25 acre planting of head lettuce were established beginning in October with final harvest occurring in April. Plant samples were conducted weekly to estimate the numbers of both alate (winged) and apterous (wingless) green peach aphids, potato aphids, cowpea aphids and lettuce aphids. Lettuce aphids were more abundant this spring than anticipated, which may indicate that lettuce aphid may be a new pest for Yuma growers. However, based on a single years data, it is difficult to measure the threat that this aphid poses to the lettuce industry. Planting date and temperature likely has a strong influence on seasonal abundance of lettuce aphids. Similarly, the consistent appearance of cowpea aphids during the season was surprising , considering that it has seldom been observed on desert lettuce. Perhaps most surprising though was the low population abundance of green peach and potato aphids in out plots. Part of this unusual event may be due to the unseasonably warm, dry growing season that was experienced this year.
    • Predicting Dispersal by Whitefly Parasitoids

      Byrne, David N.; Bellamy, David E.; Byrne, David N.; Baciewicz, Patti; Department of Entomology (College of Agriculture, University of Arizona (Tucson, AZ), 2000-08)
      These experiments were designed to examine short-range dispersal by the small whitefly parasitoid Eretmocerus eremicus that takes place within the confines of a specifically defined habitat. We were specifically concerned with the impacts of sex and mating status on their dispersal. We hoped to construct predictive models concerning dispersal. In a vertical flight chamber we found that female flight duration was significantly longer (11 times) than that of males and that unmated parasitoids flew approximately three times longer than mated individuals. In field studies 87% of the 4,153 parasitoids captured were males. This occurred in spite of sex ratios being near 1:1 upon release. The difference in dispersal characteristics between males and females may be resource based. It is felt that certain requirements were met within our field plots for males that were not met for females. It is important for males to find mates and they may have done so inside release containers or in close proximity to release sites. While females have a similar requirement, they must also find whitefly hosts to parasitize. It can be assumed that each sex took active steps to accomplish different goals. Males were searching the immediate area of the release sites where mates were plentiful, while females were leaving the 33 ft. radius plots in search of whitefly hosts. We were able to verify models for male dispersal (75% of males were predicted to disperse within 13.5 ft.). Our models predicted that 50% of females would be found within 82 ft. This information will useful when describing movement by E. eremicus and other small insects. It should prove useful when defining release techniques for parasitoids being used as biological control agents.
    • Pro-active Management of Beet Armyworm (Spodoptera exigua) Resistance to IGRs, Tebufenozide and Methoxyfenozide

      Moulton, John K.; Pepper, David A.; Dennehy, Timothy J.; Byrne, David N.; Baciewicz, Patti; Extension Arthropod Resistance Management Laboratory, Department of Entomology (College of Agriculture, University of Arizona (Tucson, AZ), 2000-08)
      Susceptibility to tebufenozide and methoxyfenozide of beet armyworm (Spodoptera exigua) from the southern United States and Thailand was determined through exposure of first and third instar larvae to dipped cotton leaves. LC50 estimates of first instar larvae ranged from 0.377 to 32.7 micrograms of tebufenozide per milliliter and 0.034 to 11.5 micrograms of methoxyfenozide per milliliter. LC₅₀ estimates of third instar larvae ranged from 4.37 to 715 micrograms of tebufenozide per milliliter and 0.393 to 47.4 micrograms of methoxyfenozide per milliliter. These estimates translated into 87-fold and 164-fold decreases in susceptibility to tebufenozide and 338-fold and 121-fold decreases in susceptibility to methoxyfenozide of first and third instar larvae from a Thailand strain when compared to the most susceptible of eight United States populations evaluated. Among the United States field populations evaluated, a collection from Belle Glade, Florida was the most susceptible and one taken near Parker, Arizona was the least susceptible. Selection of the Thailand population with tebufenozide or methoxyfenozide resulted in significant reductions in susceptibility to both analogs, indicating a common mechanism of resistance. Isolation and characterization of resistance will provide information that will be helpful for pro-active management of resistance for this valuable group of insecticides in the United States.
    • Screening New Herbicides for Weed Control in Head and Leaf Lettuces and Broccoli

      Umeda, Kai; Byrne, David N.; Baciewicz, Patti (College of Agriculture, University of Arizona (Tucson, AZ), 2000-08)
      In preemergence (PREE) herbicide testing, all three lettuces, head, romaine, and red leaf, exhibited some tolerance to carfentrazone, sulfentrazone, flumetsulam, rimsulfuron, and thifensulfuron while giving effective weed control. In postemergence (POST) testing, cloransulam and flumetsulam controlled weeds at the lowest applied rates while lettuces were safe to cloransulam at 0.01 lb AI/A and flumetsulam at 0.03 lb AI/A. Imazamox was safe on lettuces at 0.01 lb AI/A and controlled weeds at 0.007 lb AI/A. For broccoli, sulfentrazone, fluroxypyr, and thifensulfuron applied PREE demonstrated reasonable safety and weed control. Cloransulam, flumetsulam, and fluroxypyr applied POST on broccoli exhibited adequate crop safety and good weed control.
    • Seasonal Abundance and Control of the Lettuce Aphid, Nasonovia ribisnigri, on Head Lettuce in Arizona

      Palumbo, John C.; Byrne, David N.; Baciewicz, Patti (College of Agriculture, University of Arizona (Tucson, AZ), 2000-08)
      Small plot studies were conducted in 1999/2000 to examine the population abundance and control of the lettuce aphid on winter and spring head lettuce crops. Seven, 0.25 acre planting of head lettuce were established beginning in October with final harvest occurring in April. Replicated plots within several planting were treated with an Admire treatment at planting, a sidedress application of Platinum post-planting or allowed to remained untreated. Lettuce aphids were first detected in our experimental area on Feb 14 in PD 3 in untreated plants. Temperature had an important influence upon lettuce aphid development based on our field observations. Population appeared to increase in early March when the average daily temperature was about 65 °F. We observed a sharp decline in population abundance in April where daytime highs exceeded 90 °F. We were surprised by the marginal level of lettuce aphid control provided by the systemic insecticides. Lettuce treated with Admire in the early planting dates appeared to prevent lettuce aphids from significantly infesting lettuce heads at harvest. In the later planting dates, both Admire and Platinum contained significantly fewer aphids and infested plants than the untreated control. However, lettuce aphids in the last 3 planting dates were able to colonize plants and infest a larger proportion of heads at levels not considered commercially acceptable. We are hesitant to draw conclusions from our results collected from a single season , and plan to replicate this work next year under different environmental conditions and higher rates of Admire and Platinum.
    • Squash Variety Trial

      Clark, L. J.; Walser, R.; Carpenter, E. W.; Byrne, David N.; Baciewicz, Patti (College of Agriculture, University of Arizona (Tucson, AZ), 2000-08)
      Five Zucchini varieties and four yellow crook/straight-necked squash were grown in a replicated small plot trial on the Safford Agricultural Center in 1998. Varieties were picked regularly during the growing season. Yields are shown in tabular form and also graphically to indicate how each variety performed throughout the season.
    • Susceptibility of Arizona Whiteflies to Neonicotinoid Insecticides and IGRs: New Developments in the 1999 Season

      Li, Yongsheng; Dennehy, Timothy J.; Li, Xiaohua; Wigert, Monika E.; Byrne, David N.; Baciewicz, Patti; Extension Arthropod Resistance Management Laboratory, Department of Entomology (College of Agriculture, University of Arizona (Tucson, AZ), 2000-08)
      Whiteflies are serious pests of cotton, melons, and winter vegetables in Arizona’s low deserts. Successful management of whiteflies requires an integrated approach, a critical element of which is routine pest monitoring. In this paper we report findings of our 1999 investigations of resistance of Arizona whiteflies to insect growth regulators (IGRs) and neonicotinoid insecticides. Whiteflies collected from cotton fields, melon fields and greenhouses were tested for susceptibility to imidacloprid (Admire /Provado), and two other neonicotinoid insecticides, acetamiprid and thiamethoxam, and to two insect growth regulators (IGRs), buprofezin (Applaud ) and pyriproxyfen (Knack ). Contrasts of 1999 and 1998 results indicated increased susceptibilities, on average, to both imidacloprid and buprofezin of whiteflies collected from cotton. A cropping system study showed that whiteflies collected from spring melons had significantly lower susceptibility to imidacloprid than those collected from cotton or fall melons. The opposite was found for pyriproxyfen, to which whiteflies from cotton and fall melons had lower susceptibility than those from spring melons. As in 1998, whiteflies with reduced susceptibility to imidacloprid continue to be found in certain locations, particularly in spring melon fields and greenhouses. Results of our laboratory bioassays on susceptibility of Arizona whiteflies to neonicotinoid insecticides provided evidence of a low order cross-resistance between imidacloprid, acetamiprid and thiamethoxam. Monitoring in 1999 provided the first evidence of reduced susceptibility of Arizona whiteflies to pyriproxyfen.
    • Sweet Corn Variety Trial

      Clark, L. J.; Carpenter, E. W.; Neff, R. A.; Martin, S. T.; Byrne, David N.; Baciewicz, Patti (College of Agriculture, University of Arizona (Tucson, AZ), 2000-08)
      Sixteen sweet corn varieties were grown in replicated small plot trials with two dates of planting at the Safford Agricultural Center in 1999. Candy Corner ranked number one and two in the early and late dates of planting, respectively, and FMX 413 ranked number one in the later date of planting study. Both varieties produced over 2,500 dozen ears per acre. Sugar readings were made and tabulated for all varieties using a portable refractometer.