Show simple item record

dc.contributor.authorBarkley, Virginia
dc.contributor.authorEllsworth, Peter C.
dc.contributor.editorTronstad, Russellen_US
dc.contributor.editorHusman, Steveen_US
dc.contributor.editorNorton, Randyen_US
dc.date.accessioned2011-12-20T21:48:20Z
dc.date.available2011-12-20T21:48:20Z
dc.date.issued2004-05
dc.identifier.urihttp://hdl.handle.net/10150/198153
dc.description.abstractWhiteflies and Lygus bugs continue to be key pests of Arizona cotton. Some of our most popular and time-tested chemicals are still providing efficacy toward Lygus or whiteflies when used in a timely manner. However, promising new chemicals may also become available in the near future. Through research, growers can be kept updated on options for successful IPM. An experiment was conducted in order to expand our knowledge of currently available compounds and upcoming advances in insecticide development. In this experiment, 11 different compounds were tested for efficacy and duration of activity against whiteflies, Lygus, or both. Although none were active on Lygus adults, some chemicals were very effective on all stages of nymphs. Orthene® or Vydate® continue to show good results against Lygus but did not yield as high as one new compound. The best performing insecticide against Lygus was flonicamid, a novel chemistry under development by FMC. This insecticide had the best control over Lygus nymphs, was the highest yielding treatment, and required one less spray than other top performing compounds. Among newer chemistries for Lygus control is fipronil (Regent® by BASF), which performed slightly better than Vydate but not quite as effective as Orthene. Another higher-yielding regime included the use of novaluron, a novel insect growth regulator (IGR) scheduled for registration in 2005 (Diamond® by Crompton Corporation). This IGR was tested against whiteflies and Lygus bugs, but in light of yield data, Lygus efficacy should be examined more closely. None of the neonicotinoids were effective against Lygus, but several proved to be promising for whitefly control. Of the neonicotinoids tested and sprayed on threshold, dinotefuran (under development by Valent) showed good activity. The performance of spiromesifin (Oberon®, a new chemistry by Bayer) was similar to dinotefuran but needing one less spray. Intruder® out-performed all whitefly treatments, requiring only two sprays to control whiteflies season-long. Both Intruder or currently used IGRs (Knack® and Courier®) proved to be very effective against whiteflies. All insecticides in this test underwent very rigorous testing under extreme Lygus and whitefly pressures.
dc.language.isoen_USen_US
dc.publisherCollege of Agriculture, University of Arizona (Tucson, AZ)en_US
dc.relation.ispartofseriesAZ1335en_US
dc.relation.ispartofseriesSeries P-138en_US
dc.subjectAgriculture -- Arizonaen_US
dc.subjectCotton -- Arizonaen_US
dc.subjectInsect investigationsen_US
dc.titleSearch for Effective Chemical Controls for Lygus Bugs and Whiteflies in Arizona Cottonen_US
dc.typetexten_US
dc.typeArticleen_US
dc.identifier.journalCotton: A College of Agriculture and Life Sciences Reporten_US
refterms.dateFOA2018-06-23T02:16:30Z
html.description.abstractWhiteflies and Lygus bugs continue to be key pests of Arizona cotton. Some of our most popular and time-tested chemicals are still providing efficacy toward Lygus or whiteflies when used in a timely manner. However, promising new chemicals may also become available in the near future. Through research, growers can be kept updated on options for successful IPM. An experiment was conducted in order to expand our knowledge of currently available compounds and upcoming advances in insecticide development. In this experiment, 11 different compounds were tested for efficacy and duration of activity against whiteflies, Lygus, or both. Although none were active on Lygus adults, some chemicals were very effective on all stages of nymphs. Orthene® or Vydate® continue to show good results against Lygus but did not yield as high as one new compound. The best performing insecticide against Lygus was flonicamid, a novel chemistry under development by FMC. This insecticide had the best control over Lygus nymphs, was the highest yielding treatment, and required one less spray than other top performing compounds. Among newer chemistries for Lygus control is fipronil (Regent® by BASF), which performed slightly better than Vydate but not quite as effective as Orthene. Another higher-yielding regime included the use of novaluron, a novel insect growth regulator (IGR) scheduled for registration in 2005 (Diamond® by Crompton Corporation). This IGR was tested against whiteflies and Lygus bugs, but in light of yield data, Lygus efficacy should be examined more closely. None of the neonicotinoids were effective against Lygus, but several proved to be promising for whitefly control. Of the neonicotinoids tested and sprayed on threshold, dinotefuran (under development by Valent) showed good activity. The performance of spiromesifin (Oberon®, a new chemistry by Bayer) was similar to dinotefuran but needing one less spray. Intruder® out-performed all whitefly treatments, requiring only two sprays to control whiteflies season-long. Both Intruder or currently used IGRs (Knack® and Courier®) proved to be very effective against whiteflies. All insecticides in this test underwent very rigorous testing under extreme Lygus and whitefly pressures.


Files in this item

Thumbnail
Name:
az13356a-2004.pdf
Size:
164.7Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record