• Control of Sweepotato (Silverleaf) Whitefly, Bemisia Tabaci, on Cotton in Paloma, Arizona

      El-Lissy, O.; Antilla, L.; Staten, R. T.; Leggett, J. E.; Walters, M.; Silvertooth, Jeff; Arizona Cotton Research and Protection Council, Phoenix, AZ; USDA-Animal and Plant Health Inspection Service, Phoenix, AZ; USDA-ARS-Western Cotton Research Laboratory, Phoenix, AZ (College of Agriculture, University of Arizona (Tucson, AZ), 1994-03)
      A large scale for the control of sweetpotato (silverleaf) whitefly, Bemisia tabaci, (SPW) was carried out in Paloma and Painted Rock near Gila Bend, Arizona, on approximately 6,156 ha of cotton during the 1993 season. Within the program area 40 fields were randomly selected for comparison with 15 fields in each of 2 locations outside the program. They were identified as check east (approximately 11 k northeast of the program) and check west (approximately 3 k west of the program). Whitefly populations in both check areas were controlled according to individual grower protocol. On a weekly basis, adult counts were taken from all 4 edges and the centers of each field using the oil pan technique. Insecticides were applied aerially in the program area on the full field or edges based on population density recorded from pan samples. Insecticide combinations were rotated weekly in an attempt to reduce the potential for the development of pesticide resistance. During the 16 -week evaluation period SPW adults were significantly higher in check east and check west than the program area by 2- and 6-fold respectively; eggs were higher by 3- and 39 fold, respectively; and nymphs were also significantly higher in check east and check west by 3- and 60-fold respectively. Ginning records for 1993 indicate approximately a 20% increase in yield in the program area a 5% increase in check east and a 40% decrease in check west as compared to 1992. These results demonstrate that an area -wide approach, utilizing edge treatment where possible, based on extensive field sampling regimens represent an important integrated strategy in a successful whitefly control program.
    • Defoliation of Pima and Upland Cotton at the Safford Agricultural Center, 1993

      Clark, L. J.; Carpenter, E. W.; Odom, P. N.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1994-03)
      Experiments were effected on both Pima and upland cotton to compare the defoliation effects of Ginstar, Starfire and sodium chlorate with an untreated check Weather conditions after treatment applications were recorded and observations taken after one week and two weeks. Grab samples were taken from the picker to determine percent trash and to run HVI analyses.
    • Numerical and Binomial Sequential Sampling Plans for Adult Bemisia Tabaci in Cotton

      Naranjo, S. E.; Flint, H. M.; Henneberry, T. J.; Silvertooth, Jeff; USDA-ARS, Western Cotton Research Laboratory (College of Agriculture, University of Arizona (Tucson, AZ), 1994-03)
      Fixed-precision numerical and binomial sequential sampling plans are reported for adults of Bemisia tabaci (Strain B) on cotton. Both plans are based on whole leaf sample units from the fifth mainstem node (counted from the terminal). Numerical sampling plans allow for the efficient estimation of adult population density. Numerical sampling stop lines are presented relating the cumulative number of adults counted to the number of leaves examined for two levels of statistical precision. Binomial plans were developed to allow classification of adult population density for pest management decision -making application. These plans were devised for three action threshold levels; 5, 10 or 15 adults per leaf Binomial sampling stop lines are presented relating the cumulative number of infested leaves to the number of leaves examined as an aid for determining the need for population suppression.
    • Dry Matter Accumulation by Upland and Pima Cotton

      Unrah, B. L.; Silvertooth, J. C.; Steger, A. J.; Norton, E. R.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1994-03)
      Several investigations of dry matter accumulation by Upland cotton (Gossvpium hirsutum L.) have been conduced, however no investigations of this type have included American Pima cotton (G. barbadense L.). We conducted a study to describe the total dry matter accumulation and partitioning of that dry matter into various plant parts for both Upland and Pima cotton. During the growing seasons of 1990, 1991, and 1992 at two south-central Arizona locations, both Upland (var. DPL 90) and Pima (var. S-6) cotton were grown. Beginning 14 to 20 d after emergence, whole cotton plants were removed and cotton plants were separated into stems, leaves (including petioles), burs (carpel walls), lint, and seeds. The bur fraction, also included squares, flowers, immature bolls, and burs from mature bolls, Regression analyses was used to model nutrient uptake as a function of both days after planting (DAP) and heat units after planting (HUAP). Regression analyses indicated that HUAP was equally good, and in most cases superior to using DAP to model dry matter accumulation and partitioning within both Upland and Pima cotton. The general patterns of dry matter partitioning for Upland and Pima cotton are similar. However, Upland and Pima differ in the relative amount of dry matter incorporated into reproductive (bur, seed, and lint) and vegetative (leaf and stem) structures. Upland cotton produced 3527 lb /acre more total dry matter than Pima cotton. At the end of this study the vegetative /reproductive ratio for Upland was 83% compared to 70% for Pima. Upland was also more efficient at partitioning lint dry matter within the total dry matter of the reproductive structures. Dry matter incorporated into reproductive structures was 23% lint for Upland, compared to only 14% lint in Pima cotton. In summary, Upland placed more total dry matter into reproductive structures, and of the amount placed into reproductive structures, a greater proportion was incorporated into lint, when compared to Pima cotton.
    • A Community-wide Approach to Whitefly Management

      Diehl, J. W.; Ellsworth, P. C.; Husman, S. H.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1994-03)
      An extension supported, grower controlled, community pest management group was initiated in the Laveen and Tolleson communities of Arizona with the management of sweetpotato whitefly (SPWF) as its initial focus. The three functions of this group were awareness, communication, and cooperation. Increased awareness and communication of pest management problems and solutions were achieved through regular meetings and newsletters. Community cooperation took the form of a community-based overwintering survey and a sticky trap network. These two cooperative activities served both an educational and a research function. From the overwintering survey and the sticky trap network, growers learned about the overwintering habits and movement dynamics of whiteflies in their area, the limits of sticky traps for SPWF detection, the need for the reduction of SPWF populations before they move onto cotton. and the need for careful infield sampling of SPWF populations.
    • Novel Pyrethroid Combinations for Control of Sweetpotato Whitefly and Their Impact on Lygus

      Ellsworth, P. C.; Meade, D. L.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1994-03)
      Combinations of two insecticides, often a pyrethroid with an organophosphate, have been used more successfully in sweetpotato whitefly (SPWF) control programs rather than single insecticides when SPWF populations are chronically high. Ten combinations of various insecticides were compared for their effectiveness against all SPWF stages. Applications were by ground, broadcast over -the -top of plots 12 rows x 40 ft on five application dates. Three sampling methods were used: leaf turns and sweeps for adult counts, and microscopic leaf counts for immature stages. Danitol® +Orthene® emerged as the most consistently effective combination on all SPWF stages when compared to the untreated plots. Over all dates and SPWF life stages, the combinations were ranked according to the following order of descending efficacy: Danitol + Orthene 5 Danitol + Lorsban® Karate® + Penncap -M® = Scout Xtra® + Orthene = Asana® + Curacron® = Asana + Orthene < Asana + Phaser® = Scout + Phaser = Asana + Lorsban = Asana + Vydate® < untreated check. Yields were also affected by the combinations, but attributed to SPWF and Lygus suppression. Orthene treatment combinations yielded consistently greater than other entries and was likely due to superior Lygus control and at least average SPWF control. The Asana + Vydate was ranked among the best in Lygus control but low in SPWF control, while Karate + Penncap, Danitol + Lorsban, and Asana + Curacron were ranked high in SPWF control but low in Lygus control. The remaining treatments were more or less intermediate in SPWF and Lygus control. Rankings of these combinations for Lygus control were in the following order of descending efficacy: Asana + Vydate = Scout + Orthene = Asana + Orthene = Danitol + Orthene < Scout + Phaser = Danitol + Lorsban = Karate + Penncap < Asana + Curacron < Asana + Phaser = Asana + Lorsban < untreated check.
    • Short Staple Variety Demonstrations, Graham County, 1993

      Clark, Lee J.; Cluff, Ronald E.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1994-03)
      Two on farm, replicated short staple variety demonstrations were established in 1993. Twelve varieties were evaluated in one location and fifteen varieties were evaluated at the other. Delta Pine 90 was the highest yielding variety at one location with a yield of 1387 pounds of lint per acre and Stoneville LA 887 was the highest yielding variety at the other location with a yield of 1134 pounds of lint per acre.
    • Plant Population Evaluation for Upland Cotton

      Silvertooth, J. C.; Norton, E. R.; Stedman, S. W.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1994-03)
    • Potential for Pink Bollworm Control with Entomopathogenic Nematodes

      Lindegren, J. E.; Henneberry, T. J.; Raulston, J. R.; Forlow Jech, L. J.; Valero, K. A.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1994-03)
      The susceptibility of late instar pink bollworm (PBW), Pectinophora gosspiella (Saunders), larvae to two species of Steinemema was evaluated in small scale field tests in spring and summer of 1993. In the spring PBW mortality at 15 infective juveniles /cm² for S. carpocapsae and S. riobravis was 87 and 89 %, respectively. In midsummer, mortalities with S. riobravis were significantly greater than with S. carpocapsae at the four concentrations tested. A simple method was developed for small scale field testing and efficacy monitoring for PBW and other soil associated insects.
    • Potassium Fertilization of Upland and Pima Cotton

      Unruh, B. L.; Silvertooth, J. C.; Galadima, A.; Clark, L. J.; Norton, E. R.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1994-03)
      In a continuing effort to assess the agronomic necessity of potassium (K) fertilization in Arizona cotton (Gossypium spp.) production, one new and two on-going (Maricopa and Safford Ag. Centers), K fertility studies were conducted in 1993. They included locations ranging from western (Yuma) to eastern (Safford) Arizona, with both Upland (G. hirsutum L.) and American Pima (G. barbadense L.) cotton, using soil and foliar applications of K. The results indicated that there was no response to the added K at any of the locations by either Upland or Pima cotton.
    • Influence of Pink Bollworm, Pectinophora Gossypiella, (Saunders) (Lepidoptera : Gelechiidae), Female Age on Oviposition Capacity and Egg Hatchability

      El-Lissy, O.; Al-Beltagy, A.; Antilla, L.; Leggett, J. E.; Silvertooth, Jeff; Arizona Cotton Research and Protection Council, Tempe, AZ; Plant Protection Research Institute, Cairo, Egypt; USDA -ARS- Western Cotton Research Laboratory, Phoenix, AZ (College of Agriculture, University of Arizona (Tucson, AZ), 1994-03)
      Oviposition capability and e 4: hatchability of three laboratory reared strains of pink bollworm, Pectinophora gossvpiella, (Saunders) were evaluated to determine the effect of age on the female reproductive capacity. From comparisons of various female ages in terms of the amount of eggs deposited and the level of ex hatchability, it was concluded that young females (3-6 days old) had the highest potential for oviposition and that their eggs had the highest percentages of hatchability.
    • Chemical Control of the Sweetpotato Whitefly in Cotton

      Watson, T. F.; Telles, A.; Peña, M.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1994-03)
      Various registered and experimental insecticides were evaluated for sweetpotato whitefly (Bemisia tabaci Gennadius) control in several field experiments at Yuma, Arizona in 1993. Best controls were obtained with insecticide mixtures, particularly a pyrethroid and an organophosphate, rather than with individual materials. Results of these experiments indicate that severe population densities can be controlled using insecticide combinations, even though sustained use of these insecticides would probably lead quickly to the development of resistance.
    • Short Staple Variety Trials in Cochise County, 1993

      Clark, Lee J.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1994-03)
      Variety trials were grown at two locations and with two different sets of short staple varieties. One trial, north of Kansas Settlement, tested nine acalas and one rust resistant variety from Mexico. The other trial, south of Kansas Settlement and east of Pearce, tested three acalas and nine upland varieties. Top yielding varieties were Maxxa, in the acala trial and DPL 2056 in the upland trial. Yields were lower than expected due to adverse weather conditions, including hail.
    • The Effect of Night Temperature on Cotton Reproductive Development

      Zeiher, Carolyn A.; Brown, Paul W.; Silvertooth, Jeffrey C.; Matumba, Nkonko; Mitton, Nancy; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1994-03)
      A field study was initiated in the summer of 1993 to investigate the effect of increased night temperatures on cotton reproductive development. DPL 5415 was planted on May 10. Treatments consisted of two temperature regimes placed in a completely randomized design with four replications. The two temperature treatments were initiated at first bloom and treatments terminated after 6 weeks. Cotton grown under ambient night temperature served as the control treatments while plants where the infrared radiation balance was modified to increase the nighttime foliage temperature served as the high night temperature treatment. This study showed that increasing the nighttime foliage temperature of cotton reduced vegetative dry matter production, plant height, and fruit retention. The photosynthetic capacity of the two treatments was not significantly different, suggesting that increased respiration at these higher nighttime foliage temperatures may be responsible for the reduction in assimilated carbon which contributed to the poor fruit retention.
    • Sweetpotato Whitefly (Bemisia Tabaci Gennadius) Population Relationships to Cotton Yield and Quality

      Chu, C. C.; Henneberry, T. J.; Akey, D. H.; Prabhaker, N.; Perkins, H. H.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1994-03)
      Sweetpotato whitefly (SPWF) Bemisia tabaci Gennadius strain B has been a devastating pest of cotton in Arizona and California in recent years. Management systems involving cultural procedures, SPWF population monitoring crop sanitation, crop sequencing chemical control and other technology are developing slowly. SPWF population information in relation to cotton yield and quality losses are urgently needed Preliminary studies with cotton insecticide treatments initiated each week from shortly after cotton seedling emergence to late in the cotton season were conducted at the Irrigated Desert Research Station, Brawley, CA in 1993. The results suggest significant correlations for numbers of SPWF per leaf disc from cotton leaves vs. cotton yield and lint stickiness. Cotton lint yield was negatively correlated to all stages of SPWF populations (-0.783 or higher). Lint stickiness was high positively correlated to SPWF populations (0.707 or higher) and cotton defoliation was positively correlated to SPWF populations (0.876 or higher).
    • Whole Season Rotational Pesticide System for Integrated Pest Management for Control of Sweetpotato Whitefly in Cotton

      Akey, D. H.; Henneberry, T. J.; Wuertz, D. A.; Silvertooth, Jeff; USDA, ARS, Western Cotton Res. Lab., Phoenix, 85040; Sundance Farms, Coolidge, AZ 85228 (College of Agriculture, University of Arizona (Tucson, AZ), 1994-03)
      A season long pesticide rotational system for cotton management of Bemisia tabaci (Gennadius) (SPWF) was put in place. The system tried to minimize pesticide impact on midseason build -up of beneficials against SPWF. SPWF thresholds were used to begin use of "potent, efficient" insecticides to stop exponential increase of SPWF in late season. Insecticide class rotation was a key element of the system to prevent insecticide resistance. Comparisons between test blocks and best agricultural practices for rest of field showed that SPWF eggs and large immature of September populations, yields (2.68 bales /Ac), and beneficials were about the same among the blocks. The cotton was free of stickiness in the entire field.
    • Nitrogen Management Experiments for Upland and Pima Cotton, 1993

      Silvertooth, J. C.; Norton, E. R.; Unruh, B. L.; Clark, L. J.; Carpenter, E. W.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1994-03)
      Two field experiments were conducted in Arizona in 1993 at two locations (Maricopa and Safford). Both experiments have been conducted for five consecutive seasons, with consistent plot locations. The purposes of the experiments were to validate and refine nitrogen (N) fertilization recommendations for both Upland and Pima cotton. The experiments each utilized N management tools such as pre - season soil tests for NO₃⁻-N, in-season plant tissue testing (petioles) for N fertility status, and crop monitoring to ascertain crop fruiting patterns and crop N needs. Results at both locations revealed a strong relationship between the crop fruit retention levels and N needs for the crop. This pattern was further reflected in final yield analysis as a response to the N fertilization regimes used. The effects of N fertility levels have been consistently evident in crop maturity and its relationship to lint yields.
    • 1993 Cotton Seed Treatment Evaluations

      Silvertooth, J. C.; Norton, E. R.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1994-03)
      Cottonseed was treated with several fungicide treatments in an effort to protect the seed and seedling from disease. Seed germination and vigor was evaluated in three Arizona locations; Maricopa, Marana, and Safford. Stand counts were taken on two separate dates after emergence and percent emergence was calculated. Among the three locations only one, Marana, showed significant differences among treatments. The highest percent emergence being seeds treated with Nu-Flow ND at a rate of 7.5 fl oz/cwt. The untreated control placed last in the ranking at this location.
    • Pima Regional Variety Test Maricopa Agricultural Center, 1993

      Hart, G.; Nelson, J. M.; Clark, L. J.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1994-03)
      Twelve Pima varieties and experimental strains were grown in a replicated trial at the Maricopa Agricultural Center. Lint yield, boll size, lint %, gin turnout %, plant population and fiber property data are presented in this report.
    • Plant Growth Regulator Studies at the Safford Agricultural Center, 1993

      Clark, L. J.; Carpenter, E. W.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1994-03)
      Results from several tests both on the Safford Agricultural Center and off are reported on in this paper. Methano4 Cytokin, X-Cyto, Temik and Amplify-D treatments results are included and discussed.