• Evaluation of Trap Crops as a Component of a Community-Wide Pink Bollworm Control Program

      Thacker, Gary W.; Moore, Leon; Ellsworth, Peter C.; Combs, Jack; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1994-03)
      Trap crops were evaluated as a part of a community -wide pink bollworm (PBW) control program. We measured extraordinarily high numbers of PBW larvae in the trap crops in 1992, which indicated that the trap crops were attracting PBW moths from wide areas. However, we have no direct way of measuring any effect this would have on the main crop. Overall PBW populations were very low in 1993. While PBW numbers drastically declined in the community, this study offers no conclusive evidence as to whether trap crops are an effective component of a community-wide IPM program.
    • Pima Cotton Improvement

      Percy, R. G.; Turcotte, E. L.; Ray, I. M.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1994-03)
      Pima experimental strains P73, P75, P76, P77, and the cultivars Pima S-6 (PS-6) and Pima S-7 (PS-7) were grown in replicated regional tests at twelve locations across the Pima belt in 1993. Tests were machine harvested for yield determination, plant heights were measured, and lint samples were collected for fiber analysis. Considerable genotype by environment interaction for yield potential occurred across tests in 1993. Across all locations, the strain P76 ranked first in yield followed by the cultivar PS-7 and strain P75. Strains P73 and P76 produced fiber of equal or greater length, strength, and elongation than PS-7. Plant heights were greatest for the entries PS-6 and P75. Entries PS-7 and P73 were intermediate in height, while P76 and P77 were the shortest of the entries tested. Considering yield and fiber properties concurrently, P76 was the superior entry of the 1993 tests.
    • 1993 Cotton Seed Treatment Evaluations

      Silvertooth, J. C.; Norton, E. R.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1994-03)
      Cottonseed was treated with several fungicide treatments in an effort to protect the seed and seedling from disease. Seed germination and vigor was evaluated in three Arizona locations; Maricopa, Marana, and Safford. Stand counts were taken on two separate dates after emergence and percent emergence was calculated. Among the three locations only one, Marana, showed significant differences among treatments. The highest percent emergence being seeds treated with Nu-Flow ND at a rate of 7.5 fl oz/cwt. The untreated control placed last in the ranking at this location.
    • The Effect of Night Temperature on Cotton Reproductive Development

      Zeiher, Carolyn A.; Brown, Paul W.; Silvertooth, Jeffrey C.; Matumba, Nkonko; Mitton, Nancy; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1994-03)
      A field study was initiated in the summer of 1993 to investigate the effect of increased night temperatures on cotton reproductive development. DPL 5415 was planted on May 10. Treatments consisted of two temperature regimes placed in a completely randomized design with four replications. The two temperature treatments were initiated at first bloom and treatments terminated after 6 weeks. Cotton grown under ambient night temperature served as the control treatments while plants where the infrared radiation balance was modified to increase the nighttime foliage temperature served as the high night temperature treatment. This study showed that increasing the nighttime foliage temperature of cotton reduced vegetative dry matter production, plant height, and fruit retention. The photosynthetic capacity of the two treatments was not significantly different, suggesting that increased respiration at these higher nighttime foliage temperatures may be responsible for the reduction in assimilated carbon which contributed to the poor fruit retention.
    • Whole Season Rotational Pesticide System for Integrated Pest Management for Control of Sweetpotato Whitefly in Cotton

      Akey, D. H.; Henneberry, T. J.; Wuertz, D. A.; Silvertooth, Jeff; USDA, ARS, Western Cotton Res. Lab., Phoenix, 85040; Sundance Farms, Coolidge, AZ 85228 (College of Agriculture, University of Arizona (Tucson, AZ), 1994-03)
      A season long pesticide rotational system for cotton management of Bemisia tabaci (Gennadius) (SPWF) was put in place. The system tried to minimize pesticide impact on midseason build -up of beneficials against SPWF. SPWF thresholds were used to begin use of "potent, efficient" insecticides to stop exponential increase of SPWF in late season. Insecticide class rotation was a key element of the system to prevent insecticide resistance. Comparisons between test blocks and best agricultural practices for rest of field showed that SPWF eggs and large immature of September populations, yields (2.68 bales /Ac), and beneficials were about the same among the blocks. The cotton was free of stickiness in the entire field.
    • Cotton Producers Working in Unison: The Multi-Component IPM Program in Marana, AZ

      Thacker, Gary W.; Ellsworth, Peter C.; Moore, Leon; Combs, Jack; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1994-03)
      Cotton growers in Pima County, Arizona are working together to implement a community-wide Integrated Pest Management program. Participation is voluntary; and is unanimous in at least some components of the program. The IPM program employs many control components aimed at the pink bollworm, the principle cotton insect pest in the area. Growers time the deployment of the control components to act in unison throughout the community. Insecticide applications in the area have trended downward since the program began in 1991, indicating that we are making progress toward our goal of reducing the reliance on pesticides.
    • Nitrogen Management Experiments for Upland and Pima Cotton, 1993

      Silvertooth, J. C.; Norton, E. R.; Unruh, B. L.; Clark, L. J.; Carpenter, E. W.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1994-03)
      Two field experiments were conducted in Arizona in 1993 at two locations (Maricopa and Safford). Both experiments have been conducted for five consecutive seasons, with consistent plot locations. The purposes of the experiments were to validate and refine nitrogen (N) fertilization recommendations for both Upland and Pima cotton. The experiments each utilized N management tools such as pre - season soil tests for NO₃⁻-N, in-season plant tissue testing (petioles) for N fertility status, and crop monitoring to ascertain crop fruiting patterns and crop N needs. Results at both locations revealed a strong relationship between the crop fruit retention levels and N needs for the crop. This pattern was further reflected in final yield analysis as a response to the N fertilization regimes used. The effects of N fertility levels have been consistently evident in crop maturity and its relationship to lint yields.
    • Effect of Plant Water Status on Defoliation and Yield of Pima Cotton

      Nelson, J. M.; Hart, G. L.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1994-03)
      A field study was conducted at the Maricopa Agricultural Center to determine the influence of plant water status at the time of defoliation on the effectiveness of defoliants and the yield of Pima cotton. Irrigation termination dates of 3 and 20 September and 8 October were used to achieve different levels of plant water stress at the time defoliants were applied (26 October). A single application of defoliants was not adequate to defoliate the cotton under the conditions of this test. The 3 September irrigation termination date resulted in the highest percentage of defoliation (63 %). CWSI and plant water content (RWC) measurements indicated that the irrigation termination treatments resulted in large differences in plant water stress at defoliation time. There was a significant increase in the percent defoliation as the CWSI values increased from 0.54 to 0.99.
    • Cotton Defoliation Evaluations, 1993

      Silvertooth, J. C.; Stedman, S. W.; Cluff, R. E.; Norton, E. R.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1994-03)
      Three field experiments were carried out in several representative cotton producing areas of Arizona to evaluate the effectiveness of a number of defoliation treatments on Upland cotton. These experiments were conducted at Coolidge, Marana, and Safford and utilized defoliation treatments designed for their potential effectiveness finder cooler weather conditions commonly experienced later in the defoliation season and at higher elevations. The treatments employed also offer potentials for use in close proximity to urban areas due to not having offensive odors associated with them. All treatments showed promise in terms of effectiveness and the results provide a basis for use recommendations in 1994 as well further points of study in future experiments.
    • Upland Regional Cotton Variety Test at the Maricopa Agricultural Center, 1993

      Hart, G.; Nelson, J. M.; Clark, L. J.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1994-03)
      Thirty-six upland cotton varieties were grown in a replicated trial at the Maricopa Agricultural Center as part of the National Cotton Variety Testing Program. Lint yield, boll size, lint percent, gin turnout percent, plant population and fiber property data are presented in this report.
    • Novel Pyrethroid Combinations for Control of Sweetpotato Whitefly and Their Impact on Lygus

      Ellsworth, P. C.; Meade, D. L.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1994-03)
      Combinations of two insecticides, often a pyrethroid with an organophosphate, have been used more successfully in sweetpotato whitefly (SPWF) control programs rather than single insecticides when SPWF populations are chronically high. Ten combinations of various insecticides were compared for their effectiveness against all SPWF stages. Applications were by ground, broadcast over -the -top of plots 12 rows x 40 ft on five application dates. Three sampling methods were used: leaf turns and sweeps for adult counts, and microscopic leaf counts for immature stages. Danitol® +Orthene® emerged as the most consistently effective combination on all SPWF stages when compared to the untreated plots. Over all dates and SPWF life stages, the combinations were ranked according to the following order of descending efficacy: Danitol + Orthene 5 Danitol + Lorsban® Karate® + Penncap -M® = Scout Xtra® + Orthene = Asana® + Curacron® = Asana + Orthene < Asana + Phaser® = Scout + Phaser = Asana + Lorsban = Asana + Vydate® < untreated check. Yields were also affected by the combinations, but attributed to SPWF and Lygus suppression. Orthene treatment combinations yielded consistently greater than other entries and was likely due to superior Lygus control and at least average SPWF control. The Asana + Vydate was ranked among the best in Lygus control but low in SPWF control, while Karate + Penncap, Danitol + Lorsban, and Asana + Curacron were ranked high in SPWF control but low in Lygus control. The remaining treatments were more or less intermediate in SPWF and Lygus control. Rankings of these combinations for Lygus control were in the following order of descending efficacy: Asana + Vydate = Scout + Orthene = Asana + Orthene = Danitol + Orthene < Scout + Phaser = Danitol + Lorsban = Karate + Penncap < Asana + Curacron < Asana + Phaser = Asana + Lorsban < untreated check.
    • Short Staple Variety Trial, Greenlee County, 1993

      Clark, Lee J.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1994-03)
      Ten short staple cotton varieties including four New Mexico acalas, one New Mexico experimental acala, three California acalas, one hybrid acala and a rust resistant variety from Mexico were tested in the 1993 variety study. The highest yielding variety was Maxxa with a lint yield of 832 pounds per acre. In addition to lint yields; percent lint, boll weights, plant heights and plant populations are shown. Average boll weights are compared between this location and three other elevations varying from 1400 feet to 4100 feet above sea level.
    • Boll Sampling to Predict Lint Yield in Upland and Pima Cotton

      Unrah, Bryan L.; Norton, E. R.; Silvertooth, J. C.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1994-03)
      Giving a cotton (Gossypium spp.) producer a method to predict lint yield, would be a useful management tool. The objective of this study was to determine if relatively simple measurements could be made near cut -out which could be used to adequately estimate lint yield for Upland (G. hirsutum L.) and Pima (G. barbadense L.) cotton. Data and samples were collected from the nitrogen (N) management study at Maricopa Ag. Center from two N treatments which were imposed on both Upland (var. DPL 5415) and Pima (var. S-7) cotton. The treatments were no added N and N added on an as- needed basis. Twenty hard -green bolls from the first or second fruiting positions were collected from each plot on 19 August 1993. The number of bolls expected to reach maturity prior to crop termination were then determined from five randomly selected plants in each plot. Measurements on each boll collected included fresh weight, diameter, number of locks, number of seeds, and dry seed cotton weight. Plant population was determined from early season stand counts. Seed cotton per boll was most highly correlated to boll weight for DPL 5415 and for Pima S-7 it was most highly correlated with boll diameter. These respective parameters were then used in linear regression to predict seed cotton /boll. Lint yield calculated from the regression models (using boll weight or diameter) and yield calculated from means of the data collected agreed quit well. Predicted yields from regression analysis overestimated the actual Upland yield by about 730 lb lint /acre and under estimated Pima yields to within about 150 lb lint /acre. It appears that this procedure has the potential to estimate lint yields to within about 150 lb lint /acre. However the sampling scheme will he refined especially in regard to estimation of plants /acre and bolls /plant which should improve yield estimate accuracy.
    • Plant Growth Regulator Studies at the Safford Agricultural Center, 1993

      Clark, L. J.; Carpenter, E. W.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1994-03)
      Results from several tests both on the Safford Agricultural Center and off are reported on in this paper. Methano4 Cytokin, X-Cyto, Temik and Amplify-D treatments results are included and discussed.
    • Control of Sweepotato (Silverleaf) Whitefly, Bemisia Tabaci, on Cotton in Paloma, Arizona

      El-Lissy, O.; Antilla, L.; Staten, R. T.; Leggett, J. E.; Walters, M.; Silvertooth, Jeff; Arizona Cotton Research and Protection Council, Phoenix, AZ; USDA-Animal and Plant Health Inspection Service, Phoenix, AZ; USDA-ARS-Western Cotton Research Laboratory, Phoenix, AZ (College of Agriculture, University of Arizona (Tucson, AZ), 1994-03)
      A large scale for the control of sweetpotato (silverleaf) whitefly, Bemisia tabaci, (SPW) was carried out in Paloma and Painted Rock near Gila Bend, Arizona, on approximately 6,156 ha of cotton during the 1993 season. Within the program area 40 fields were randomly selected for comparison with 15 fields in each of 2 locations outside the program. They were identified as check east (approximately 11 k northeast of the program) and check west (approximately 3 k west of the program). Whitefly populations in both check areas were controlled according to individual grower protocol. On a weekly basis, adult counts were taken from all 4 edges and the centers of each field using the oil pan technique. Insecticides were applied aerially in the program area on the full field or edges based on population density recorded from pan samples. Insecticide combinations were rotated weekly in an attempt to reduce the potential for the development of pesticide resistance. During the 16 -week evaluation period SPW adults were significantly higher in check east and check west than the program area by 2- and 6-fold respectively; eggs were higher by 3- and 39 fold, respectively; and nymphs were also significantly higher in check east and check west by 3- and 60-fold respectively. Ginning records for 1993 indicate approximately a 20% increase in yield in the program area a 5% increase in check east and a 40% decrease in check west as compared to 1992. These results demonstrate that an area -wide approach, utilizing edge treatment where possible, based on extensive field sampling regimens represent an important integrated strategy in a successful whitefly control program.
    • Potassium Fertilization of Upland and Pima Cotton

      Unruh, B. L.; Silvertooth, J. C.; Galadima, A.; Clark, L. J.; Norton, E. R.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1994-03)
      In a continuing effort to assess the agronomic necessity of potassium (K) fertilization in Arizona cotton (Gossypium spp.) production, one new and two on-going (Maricopa and Safford Ag. Centers), K fertility studies were conducted in 1993. They included locations ranging from western (Yuma) to eastern (Safford) Arizona, with both Upland (G. hirsutum L.) and American Pima (G. barbadense L.) cotton, using soil and foliar applications of K. The results indicated that there was no response to the added K at any of the locations by either Upland or Pima cotton.
    • Use of Leaf Water Potentials to Determine Timing of Initial Post-Plant Irrigation

      Steger, A. J.; Silvertooth, J. C.; Brown, P. W.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1994-03)
      Presumably, from a physiological standpoint, early season water stress should be avoided to ensure early fruit initiation, good fruit retention, and optimum yield potential of cotton (Gossypium spp.). This study was conducted to determine the optimum timing of the initial post plant irrigation and the long term effect of postponement on subsequent plant growth patterns, fruit retention, and yield. A short - season Upland variety, (G. hirsutum L.), DPL 20, was planted on 19 April in Marana, AZ, elevation 1970 ft. , on a Pima clay loam (Typic Torrifluvent) soil. Plots (experimental units) consisted of eight 40 in. rows and extended the full length of the irrigation run (600 ft.). Experimental design was a randomized complete block with four replications. Initial post - plant irrigations, designated T1 , 72, and T3, were applied when the midday leaf water potential (ψ) of the uppermost, fully- developed leaf reached -15, -19, and -23 bars, respectively. All treatments received the same irrigation regime following the initial post plant irrigation. Basic plant measurements were taken weekly from each experimental unit. These included plant height, number of mainstem nodes, location of first fruiting branch, fruit retention, number of nodes above the uppermost white bloom, bloom count within a 166 ft² area, and percent canopy cover. Soil -water data at seven 25 cm depth increments was collected from a total of 36 access tubes located within the field study, with three tubes per plot. Lint yields (lb. lint /acre) were 1112, 1095, and 977 for T1 , 72, and T3, respectively. Yields were significantly lower when the initial post plant irrigation was applied after ψ, dropped below -19 bars, confirming the results of a previous study conducted in 1992. Throughout the growing season, height - node ratios (HNR) of T1 and 72 plants were at or above the upper threshold established for DPL 20, while T3 HNR remained close to the expected baseline. Fruit retention was low for all three treatments due to season -long insect pressure from lygus bug. The low fruit retention data reflects the effects of high HNR. Future work will include efforts to separate changes in ψ due to day-to-day climatic variations from those caused by soil -water depletion. A second objective will be to incorporate the data obtained from the neutron moisture meter probe into the study results in an effort to better describe the complete soil-plant-atmosphere continuum as affected by the various treatment regimes employed in this study.
    • Pima Regional Variety Test Maricopa Agricultural Center, 1993

      Hart, G.; Nelson, J. M.; Clark, L. J.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1994-03)
      Twelve Pima varieties and experimental strains were grown in a replicated trial at the Maricopa Agricultural Center. Lint yield, boll size, lint %, gin turnout %, plant population and fiber property data are presented in this report.
    • Seasonal Distribution of Cotton Leafperforator: Pheromone Dispenser Persistence and Effect of Trap Height on Moth Catches in Pheromone Baited Traps

      Leggett, J. E.; Henneberry, T. J.; White, R. D.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1994-03)
      The cotton leafperforator (CLP) Bucculatrix thurberiella Busck. is a sporadic pest in cotton fields of southwest desert area. The cotton leafperforator sex pheromone was identified and synthesized by Hall et al. (1992), thus providing a sensitive method for detecting CLP moths. Tests were conducted in 1992 and 1993 to determine the effective life of CLP polyethylene pheromone dispensers, correlate CLP male moth catches to cotton field infestations, determine the seasonal distribution, and effect of trap height on moth catches. The polyethylene pheromone dispensers were effective for about 4 weeks. The best correlation coefficients for 1993 data, were obtained by comparing CLP moth catches per night to main stem leaf damage at 6 node position from top of plants at field edges. Horseshoe stage CLP per leaf and trap catches had the highest correlation coefficient, r= 0.78. There was more than twice as much CLP damage to leaves at field edges when compared to leaves 10 m into the field. The first CLP moth capture occurred in early to late July and increased rapidly each year in August to 100 to 200 per trap night, but was variable in September, with a high of 300 and a low of 9 per trap night. CLP- baited delta traps placed 0.3 m above ground caught more moths than traps placed at greater heights from 11 to 21 August.
    • Physiological Response of Cotton to Terminal Damage

      Unruh, B. L.; Silvertooth, J. C.; Hanline-Boerum, T. R.; Marlow, B. M.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1994-03)
      The terminal of a cotton (Gossypium spp.) plant controls the growth of lower vegetative branches through the production of hormones. If the terminal is damaged then the lower vegetative branches will begin to grow and produce new mainstems. The objective of this study was to determine what delays, if any, are caused by damage to the terminal meristem. Three identical experiments (differing only by their planting date) were conducted in the greenhouse in which Upland (G. hirsutum L., var. DPL 5415) cotton was planted in 24 pots and allowed to grow until the majority of the plants reached the four true -leaf stage. At that point half of the plants had their terminals removed. Twice weekly series of plant measurements were recorded for each plant in the study. Measurements taken included the number of mainstem nodes, plant height, node of the first fruiting branch (FFB), days after terminal removal (DATR) until the appearance of the FFB, node of the first bloom, and DATR until the appearance of the first bloom were recorded. Removal of the terminal significantly increased the node of the FFB, the node of the first bloom, and the occurrence of each of these by 7 to 8 days. Regression analysis was used to model plant height and the accumulation of mainstem nodes as a function of DATR. Results showed that plants with terminals removed did reach the same height as the control group. However, the plants with their terminals removed never accumulated as many mainstem nodes as their counterparts in the control group.