• Soil Amendment Study on Long and Short Staple Cotton, Safford Agriculture Center, 2000

      Clark, L. J.; Carpenter, E. W.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 2001)
      Two soil amendments, Agriblend Plus and Superfloc A-836, were applied to cotton beds prior to planting at rates of 5, 10, 15 and 20 pounds per acre, incorporated and planted to short staple (DP 655BR) or long staple (HTO) cotton. The experimental plots were fertilized, irrigated and managed in a manner to produce optimal cotton yields. No statistically significant yield increases were seen from any of the treatments, even though a few interesting trends were observed. The report contains observations on plant mapping and lint quality data, in addition to yield data.
    • Heat Stress and Cotton Yields in Arizona

      Brown, Paul W.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 2001)
      Yield of upland cotton was related to heat stress in Yuma, LaPaz, Maricopa, and Pinal Counties for the period 1987-1999. Heat stress during the primary fruiting cycle was assessed using heat stress units (HSU) which were derived from mean daily canopy temperatures computed using a canopy temperature model and local AZMET weather data. Mean lint yields were computed for years with low, intermediate and high levels of HSU. Yields in years with low levels of heat stress were always significantly greater than yields in years with high levels of heat stress. Differences in yield between high and low heat stress years ranged from 100 lb/a in Maricopa County to 254 lb/a in Yuma County and averaged 166 lb/a across all counties. Differences in yield between the low and intermediate stress years, and intermediate and high stress years averaged 86 and 80 lb/a, respectively across all counties; however, these differences were not always significant in individual counties.
    • Cotton Aphid Biology and Honydew Production

      Henneberry, T. J.; Forlow Jech, L.; Silvertooth, Jeff; USDA-ARS, Western Cotton Research Laboratory, Phoenix, AZ (College of Agriculture, University of Arizona (Tucson, AZ), 2001)
      Cotton aphid, Aphis gossypii Glover, fecundity, nymph development and honeydew production were studied in the laboratory. Apterous adult females produced an average of 1.7 nymphs per day and the nymphs (four instars) developed to adults in an average of 4.1 days at 26.7° C in the laboratory. Average longevity of adults was 16.1 days. More honeydew drops were produced by one-day old nymphs than three- or four-day old nymphs. Numbers of honeydew drops produced on a day to day basis were highly variable and did not show a distinct pattern of production. More honeydew drops, sugars and progeny were produced by adults at 26.7° C compared with 15.6 or 32.2° C. Increasing times of exposure of clean cotton lint to aphids and the resulting increasing amounts of honeydew sugars under laboratory and field conditions were significantly related to increasing cotton lint stickiness as measured with a thermodetector.
    • Effects of High Frequency Irrigation on Irrigation Uniformity III

      Martin, E. C.; Laine, G.; Sheedy, M.; Silvertooth, Jeff; University of Arizona, Cooperative Extension (College of Agriculture, University of Arizona (Tucson, AZ), 2001)
      Data was collected for a third season to determine the effects of high frequency irrigation on irrigation uniformity in cotton production. The past two seasons indicated that high frequency irrigation worked better on sandier soils than soils containing high clay contents. Although no significant differences were found, higher yields were obtained on a site with a relatively high sand content. A field located at the Maricopa Agricultural Center was split into two treatments. Treatment 1 was irrigated at approximately 35% depletion of available water in the plant rootzone. Treatment 2 was irrigated at approximately 50% depletion in the crop rootzone. Although the yield data from Treatment 1 was higher on the average, statistically, there was no difference between the two treatments.
    • Nitrogen Management Experiments For Upland and Pima Cotton, 2000

      Silvertooth, J. C.; Norton, E. R.; Galadima, A.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 2001)
      Two field experiments were conducted in Arizona in 2000 at two locations (Maricopa and Marana). The Maricopa experiment has been conducted for nine consecutive seasons; the Marana site was initiated in 1994. The purposes of the experiments were to validate and refine nitrogen (N) fertilization recommendations for Upland cotton. The experiments each utilized N management tools such as pre-season soil tests for NO₃⁻-N, in-season plant tissue testing (petioles) for N fertility status, and crop monitoring to ascertain crop fruiting patterns and crop N needs. At each location, treatments varied from a conservative to a more aggressive approach of N management. Results at each location revealed a strong relationship between the crop fruit retention levels and N needs for the crop. This pattern was further reflected in final yield analysis as a response to the N fertilization regimes used. The higher, more aggressive, N application regimes did not benefit yields at any location. In 2000, fruit retention levels were good and crop vigor was not excessive. The more conservative, feedback approach to N management provided optimum yields at both locations.
    • Evaluation of a Calcium-Based Soil Conditioner in Irrigated Cotton

      Silvertooth, J. C.; Norton, E. R.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 2001)
      A two site evaluation of a calcium (Ca²⁺)-based soil conditioner was conducted during the 1999 cotton season. The two locations included one at the Maricopa Agricultural Center (MAC) in Maricopa, AZ and the other was on a grower-cooperator field in Tacna, AZ. Both studies involved the use of CN-9, a Ca-nitrate solution with 9% nitrogen and 11% Ca. At MAC theCN-9 solution was sprayed over the seedbed post planting but prior to the first water-up irrigation. At the Tacna site CN-9 was applied in a sidedress application at planting. Routine plant measurements were taken throughout the duration of both studies and lint yield estimates were made at each location at the end of the season. No significant differences due to the application of CN-9 were detected in any data collected.
    • Pest and Pesticide Usage Patterns in Arizona Cotton: Final 2000 Date

      Agnew, G. E.; Baker, P. B.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 2001)
      Arizona's pesticide use reporting (PUR) database is used to track and quantify the general decline in pesticide use in the state. A full summary of the official 2000 growing season pesticide usage is included. The database also enables tracking of changing usage patterns. For two years, target pest information has been included in the Arizona PUR database. Limitations in the PUR database are discussed. The reporting coverage shortfall for insecticide reports in the PUR database is estimated and found to be reasonable relative to sample based approaches to pesticide use reporting.
    • Agronomic and Economic Evaluation of Ultra Narrow Row Cotton Production in Arizona 1999-2000

      Husman, S. H.; McCloskey, W. B.; Teegerstrom, T.; Clay, P. A.; Wegener, R. J.; Silvertooth, Jeff; University of Arizona Cooperative Extension, Tucson, AZ (College of Agriculture, University of Arizona (Tucson, AZ), 2001)
      Ultra Narrow Row (UNR) and conventional (CNV) cotton production systems were compared with respect to agronomic practices, yield, fiber quality, and production costs in experiments conducted in 1999 and 2000 in central Arizona. Cotton rows were 10 and 40 inches apart in the UNR and CNV systems, respectively. In 1999, the average lint yield in the UNR system, 1334 lb/A, was significantly greater than the 1213 lb/A yield of the CNV system. Similar results were obtained in 2000 with yields of 1472 and 1439 lb/A for the UNR and CNV systems, respectively. Fiber grades of both systems were comparable with most bales receiving a grade of 21 in 1999. The average bale grades in 2000 were 11 and 21 in the UNR and CNV systems, respectively. The quality of the fiber produced in both systems was also comparable with staple and strength measurements meeting base standards in both years. However, there was a consistent difference between the UNR and CNV systems in both years with respect to micronaire. Micronaire averaged 4.5 and 4.0 in the UNR system in 1999 and 2000, respectively, and 5.0 and 4.9 in the CNV system in 1999 and 2000, respectively. Variable growing costs were $607 and $446 for the UNR system in 1999 and 2000, respectively, and $660 and $519 for the CNV system in 1999 and 2000, respectively. Harvest and post-harvest variable costs were $234 and $209 in the UNR system in 1999 and 2000, respectively, and $217 and $224 in the CNV system in 1999 and 2000, respectively. The economic data indicated that the UNR system reduced production costs and increased profitability without sacrificing lint yield or quality. However, these experiments also indicated that many production challenges such as planting and obtaining adequate plant populations, managing plant height control, and weed control need further study.
    • Defoliation of Pima and Upland Cotton at the Safford Agricultural Center, 2000

      Clark, L. J.; Coleman, R. D.; Carpenter, E. W.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 2001)
      Nine defoliation treatments based on defoliating agents that are in use in the area plus two additives (compounds A, B) were applied to Pima and Upland cotton to compare the treatment effects on percent leaf drop and yields. All of the treatments were beneficial to leaf drop compared to the untreated check with the Ginstar treatments generally performing better than the chlorate. One of the additives enhanced the early defoliation effectiveness of chlorate, the other additive enhanced the effectiveness of Ginstar throughout the defoliation process. More studies will be needed before recommendations can be made.
    • Evaluation of Crop Management Effects on Fiber Micronaire, 2000

      Silvertooth, J. C.; Galadima, A.; Norton, E. R.; Tronstad, R.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 2001)
      Arizona has experienced a trend toward increasing fiber micronaire values in recent years resulting in substantial discounts on fiber value. There is some evidence to suggest management can impact fiber micronaire. Approximately 250 cases were identified in cotton production areas in Arizona ranging from the lower Colorado River Valley to near 2,000 ft. elevation with grower cooperators in the 2000 season. Field records were developed for each field by use of the University of Arizona Cotton Monitoring System (UA-CMS) for points such as variety, planting date, fertility management, irrigation schedules, irrigation termination, defoliation, etc. Routine plant measurements were conducted to monitor crop growth and development and to identify fruiting patterns and retention through the season. As the crop has approached cutout and the lower bolls began to open, open boll samples have been collected from the lowest four, first position bolls (theoretically the bolls with the highest micronaire potential on the plant) from 10 plants, ginned, and the fiber analyzed for micronaire (low 4). From that point forward, total boll counts per unit area and percent open boll measurements are being made on 14-day intervals until the crop is defoliated. Following defoliation, final plant maps were performed. Relationships among low 4 samples micronaire, irrigation termination (IT), defoliation, and final crop micronaire were analyzed.
    • Pima Cotton Regional Variety Trial, Safford Agricultural Center, 2000

      Clark, L. J.; Carpenter, E. W.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 2001)
      Twenty five long staple varieties were tested in a replicated small plot trial on the Safford Agricultural Center in Graham county at an elevation of 2950 feet. The highest yielding variety in this study was Hazera 83-208 with a yield of 1180 pounds of lint p1er acre. This interspecific hybrid from Israel was the highest yielding cultivar in the 1999 test, also. The top five varieties consisted of two interspecific hybrids from Isreal, a variety developed by the University of Arizona and entries from Buttonwillow Research and California Planting Cotton Seed Distributors (CPCSD). The average yield in the trial was the same as last year, but the highest yield was slightly lower. Yield and other agronomic data as well as fiber quality data are contained in this paper.
    • Cotton IPM in Arizona: A Decade of Research, Implemention & Education

      Ellsworth, Peter C.; Jones, Jennifer S.; Silvertooth, Jeff; University of Arizona, Maricopa, AZ (College of Agriculture, University of Arizona (Tucson, AZ), 2001)
      Cotton production in Arizona has been faced with major challenges in insect control during the past decade. These challenges have been met through IPM programs of research, implementation, and education. The decade began (1990) with an outbreak of our key lepidopteran pest, the pink bollworm. Growers sprayed for all pests more than 11 times at a cost of over $113 / A that year. The following years (1991–1995) saw the introduction of and devastation by a serious, quality-reducing insect, the sweetpotato or silverleaf whitefly. Growers sprayed up to 6.6 times (1995) at a cost of over $145 / A to combat this single insect pest. The cotton IPM program at the University of Arizona along with industry, grower, and USDA partners readied farmers for the introduction (1996) of two strategic sets of pest control technology, ‘Bt’ transgenic cotton and insect growth regulators (IGR). Through an aggressive educational campaign, growers learned about the safe, effective, and sustainable use of these technologies. As a result, cotton growers saw their average spray requirement plummet from 12.5 sprays at $217 / A (1995) to an historic low of 1.91 sprays at $37 / A (1999). Now new threats from an old pest, Lygus bugs, pose serious challenges to these staggering advances in cotton IPM. This paper highlights the key advances made in research, implementation, and education during this volatile decade. Furthermore, we conclude with one example how systematic, large-scale, and long-term research can provide insight into the role that new technology and the knowledge to use it properly have on cotton grower and industry success.
    • Upland Cotton Regional Variety Trial, 2000

      Hart, G.; Moser, H.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 2001)
      Each year the University of Arizona conducts upland cotton variety tests to evaluate the performance of a diverse set of experimental and commercial varieties in Arizona. One such program is the Regional Variety Test (RVT). In 2000, we evaluated a total of 61 varieties at one or more locations in Arizona. These varieties were submitted to us for testing by 13 private seed companies and three public breeding programs. This report presents the results of the trials conducted at Maricopa, Marana, Safford and Yuma.
    • Evaluation of Irrigation Termination Effects on Fiber Micronaire and Yield of Upland Cotton, 2000

      Silvertooth, J. C.; Galadima, A.; Norton, E. R.; Moser, H.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 2001)
      Arizona has experienced a trend toward increasing fiber micronaire values in recent years resulting in substantial discounts on fiber value. There is some evidence to suggest that irrigation termination management can impact fiber micronaire. A single field study was conducted in 2000 at the Maricopa Agricultural Center (1,175ft. elevation) to evaluate the effects of three dates of irrigation termination on the yield of 13 Upland cotton varieties. Planting date was 6 April (668 HU/Jan 1 86/55° F thresholds). Three dates of irrigation termination (IT1, IT2, and IT3) were imposed based upon crop development into cutout. The earliest irrigation termination date, IT1 (24 July) was made slightly ahead of an optimum date to provide sufficient soil-water such that bolls set at the end of the first fruiting cycle would not be water stressed and could be fully matured. Thus, the IT1 date was imposed to try to reduce overall micronaire. The second termination (IT2) date was 17 August, and provided one additional irrigation over an optimal point for the first cycle fruit set and two irrigations beyond IT1. The final (IT3) date was 15 September, which was staged so that soil moisture would be sufficient for the development of bolls set up through the last week of September thus providing full top-crop potential. Lint yield and micronaire results revealed significant differences among the IT treatments. Micronaire and lint yield values increased with later IT dates.
    • Recent Yield and Fiber Micronaire Tendencies for Upland Cotton in Arizona

      Silvertooth, J. C.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 2001)
      Problems associated with increasing trends towards high micronaire values for Upland cotton (Gossypium hirsutum L.) have been a matter of concern for the Arizona cotton industry in recent years. The discounts on fiber value associated with high micronaire has been compounded by the fact that market prices for cotton fiber has been very low in recent years and yields have been stable at best. An evaluation of recent yield and fiber quality data from a number of locations in Arizona was evaluated in relation to trends within Arizona and across the U.S. cotton belt. Results indicate similar patterns exist in terms of stable yields (yield plateau) and increasing micronaire values between Arizona and other U.S. cotton producing states. The conclusion is presented that these patterns are at least due in part to a common genetic base for varieties that grown in Arizona and beltwide. There also appears to be some distinct relationships associated with high micronaire with region and individual farm management practices.
    • Planting Date Effects Crop Growth and Yield of Several Varieties of Cotton, Marana 2000

      Silvertooth, J. C.; Galadima, A.; Norton, E. R.; Moser, H.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 2001)
      A field study was conducted in 2000 at the University of Arizona Marana Agricultural Center (1,974 ft. elevation) to evaluate the effects of three planting dates on yield and crop development of 13 varieties of upland cotton. Planting dates included 4 April, 21 April, and 9 May. The associated heat units accumulated since 1 January were 617, 877, and 1203 respectively (using 86/55 °F maximum/minimum thresholds respectively). Results indicate that there was a significant interaction between planting date and variety. Overall, lint yields significantly declined with later planting dates and significantly varied among varieties within each planting date.
    • Acala Cotton Variety Trial, Safford Agricultural Center, 2000

      Clark, L. J.; Carpenter, E. W.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 2001)
      Eighteen Acala cotton varieties were tested in a replicated small plot trial on the Safford Agricultural Center in Graham county at an elevation of 2950 feet. The highest yielding variety in this study was Hazera 195-208, an interspecific hybrid from Israel, with a yield of 1387 pounds of lint per acre. It was followed closely by two varieties from New Mexico, 1517-99 and B7514. Hazera 195-208 had the highest yield in an interspecific hybrid study and 1517-99 was the highest yielding Acala variety in the Upland cotton regional variety trial in 1999 (1). The next five varieties consisted of two interspecific hybrids from Israel, a variety from Buttonwillow Research and two advanced strains from New Mexico. Yield and other agronomic data as well as fiber quality data are contained in this paper.
    • 2000 Low Desert Upland Cotton Advanced Strains Testing Program

      Husman, S.; Moser, H.; Wegener, R.; Silvertooth, Jeff; University of Arizona Cooperative Extension (College of Agriculture, University of Arizona (Tucson, AZ), 2001)
      Upland cotton advanced strains and commercial check comparison varieties were evaluated in replicated field studies at four locations in 2000. The test sites include Yuma, AZ., Buckeye, AZ., Maricopa, AZ., and Safford, AZ.. Nine seed companies submitted a maximum of five advanced strains entries per location. Three commercial check varieties were used at each site for comparison purposes and included DP 5415, SG 125, and STV 474.
    • Short Staple Variety Trials in Cochise County, 2000

      Clark, L. J.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 2001)
      Twelve varieties were tested including three New Mexico Acalas and one Acala from Buttonwillow Research in California, three roundup Ready varieties, a buctril resistant variety, a Bollgard variety and three other varieties. The highest yielding variety in the trial was 1517-99, with FiberMax 989, 1517-95 and SureGrow 521RR following in yield. Yields were considerably lower than seen in the previous year’s study (1). Several Roundup Ready varieties were included in this study. Plant mapping data and HVI data are also included in this report.
    • Short Staple Variety Trial in Virden, NM, 2000

      Clark, L. J.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 2001)
      Twelve varieties were tested including three New Mexico Acalas and one Acala from Buttonwillow Research in California, three roundup ready varieties, a buctril resistant variety, a Bollgard variety and three other varieties. The highest yielding variety in the trial was FM 989 with a yield of 1046 pounds of lint per acre. It was also the highest yielding variety in the Cochise County trial the past two years, but had not been grown in Hidalgo or Greenlee Counties before. BW 9802, a variety from Buttonwillow Research in California, came in a close second. Interesting HVI data are also included in this report.