• Evaluation of Irrigation Termination Effects on Fiber Micronaire and Yield of Upland Cotton, 2000

      Silvertooth, J. C.; Galadima, A.; Norton, E. R.; Moser, H.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 2001)
      Arizona has experienced a trend toward increasing fiber micronaire values in recent years resulting in substantial discounts on fiber value. There is some evidence to suggest that irrigation termination management can impact fiber micronaire. A single field study was conducted in 2000 at the Maricopa Agricultural Center (1,175ft. elevation) to evaluate the effects of three dates of irrigation termination on the yield of 13 Upland cotton varieties. Planting date was 6 April (668 HU/Jan 1 86/55° F thresholds). Three dates of irrigation termination (IT1, IT2, and IT3) were imposed based upon crop development into cutout. The earliest irrigation termination date, IT1 (24 July) was made slightly ahead of an optimum date to provide sufficient soil-water such that bolls set at the end of the first fruiting cycle would not be water stressed and could be fully matured. Thus, the IT1 date was imposed to try to reduce overall micronaire. The second termination (IT2) date was 17 August, and provided one additional irrigation over an optimal point for the first cycle fruit set and two irrigations beyond IT1. The final (IT3) date was 15 September, which was staged so that soil moisture would be sufficient for the development of bolls set up through the last week of September thus providing full top-crop potential. Lint yield and micronaire results revealed significant differences among the IT treatments. Micronaire and lint yield values increased with later IT dates.
    • Recent Yield and Fiber Micronaire Tendencies for Upland Cotton in Arizona

      Silvertooth, J. C.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 2001)
      Problems associated with increasing trends towards high micronaire values for Upland cotton (Gossypium hirsutum L.) have been a matter of concern for the Arizona cotton industry in recent years. The discounts on fiber value associated with high micronaire has been compounded by the fact that market prices for cotton fiber has been very low in recent years and yields have been stable at best. An evaluation of recent yield and fiber quality data from a number of locations in Arizona was evaluated in relation to trends within Arizona and across the U.S. cotton belt. Results indicate similar patterns exist in terms of stable yields (yield plateau) and increasing micronaire values between Arizona and other U.S. cotton producing states. The conclusion is presented that these patterns are at least due in part to a common genetic base for varieties that grown in Arizona and beltwide. There also appears to be some distinct relationships associated with high micronaire with region and individual farm management practices.
    • Acala Cotton Variety Trial, Safford Agricultural Center, 2000

      Clark, L. J.; Carpenter, E. W.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 2001)
      Eighteen Acala cotton varieties were tested in a replicated small plot trial on the Safford Agricultural Center in Graham county at an elevation of 2950 feet. The highest yielding variety in this study was Hazera 195-208, an interspecific hybrid from Israel, with a yield of 1387 pounds of lint per acre. It was followed closely by two varieties from New Mexico, 1517-99 and B7514. Hazera 195-208 had the highest yield in an interspecific hybrid study and 1517-99 was the highest yielding Acala variety in the Upland cotton regional variety trial in 1999 (1). The next five varieties consisted of two interspecific hybrids from Israel, a variety from Buttonwillow Research and two advanced strains from New Mexico. Yield and other agronomic data as well as fiber quality data are contained in this paper.
    • 2000 Low Desert Upland Cotton Advanced Strains Testing Program

      Husman, S.; Moser, H.; Wegener, R.; Silvertooth, Jeff; University of Arizona Cooperative Extension (College of Agriculture, University of Arizona (Tucson, AZ), 2001)
      Upland cotton advanced strains and commercial check comparison varieties were evaluated in replicated field studies at four locations in 2000. The test sites include Yuma, AZ., Buckeye, AZ., Maricopa, AZ., and Safford, AZ.. Nine seed companies submitted a maximum of five advanced strains entries per location. Three commercial check varieties were used at each site for comparison purposes and included DP 5415, SG 125, and STV 474.
    • Short Staple Variety Trials in Cochise County, 2000

      Clark, L. J.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 2001)
      Twelve varieties were tested including three New Mexico Acalas and one Acala from Buttonwillow Research in California, three roundup Ready varieties, a buctril resistant variety, a Bollgard variety and three other varieties. The highest yielding variety in the trial was 1517-99, with FiberMax 989, 1517-95 and SureGrow 521RR following in yield. Yields were considerably lower than seen in the previous year’s study (1). Several Roundup Ready varieties were included in this study. Plant mapping data and HVI data are also included in this report.
    • Planting Date Effects Crop Growth and Yield of Several Varieties of Cotton, Marana 2000

      Silvertooth, J. C.; Galadima, A.; Norton, E. R.; Moser, H.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 2001)
      A field study was conducted in 2000 at the University of Arizona Marana Agricultural Center (1,974 ft. elevation) to evaluate the effects of three planting dates on yield and crop development of 13 varieties of upland cotton. Planting dates included 4 April, 21 April, and 9 May. The associated heat units accumulated since 1 January were 617, 877, and 1203 respectively (using 86/55 °F maximum/minimum thresholds respectively). Results indicate that there was a significant interaction between planting date and variety. Overall, lint yields significantly declined with later planting dates and significantly varied among varieties within each planting date.
    • Pest and Pesticide Usage Patterns in Arizona Cotton: Final 2000 Date

      Agnew, G. E.; Baker, P. B.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 2001)
      Arizona's pesticide use reporting (PUR) database is used to track and quantify the general decline in pesticide use in the state. A full summary of the official 2000 growing season pesticide usage is included. The database also enables tracking of changing usage patterns. For two years, target pest information has been included in the Arizona PUR database. Limitations in the PUR database are discussed. The reporting coverage shortfall for insecticide reports in the PUR database is estimated and found to be reasonable relative to sample based approaches to pesticide use reporting.
    • Mortality and Development Effects of Transgenic Cotton on Pink Bollworm Larvae

      Henneberry, T. J.; Forlow Jech, L.; de la Torre, T.; Silvertooth, Jeff; USDA-ARS, PWA, Western Cotton Research Laboratory, Phoenix, AZ 85040-8803 (College of Agriculture, University of Arizona (Tucson, AZ), 2001)
      Pink bollworm (PBW), Pectinophora gossypiella (Saunders), larval mortality after different times of confinement on NuCOTN 33B® (Bt) cotton bolls were compared with larval mortality on Delta and Pineland 5415 cotton bolls as controls. We also compared larval mortality on different age cotton fruiting forms and determined the Bt susceptibility of different age PBW larvae. Infesting Bt bolls with PBW eggs that hatched within 24 h resulted in 92% larval mortality after 48 h and 100% mortality in 4 days or longer. There were no differences between cultivars in numbers of larval entrances holes into bolls. Generally, days to pupation for both males and females were longer on Bt bolls compared with non-Bt cotton. There were no significant mortality differences for larvae feeding on Bt fruiting forms of different ages ranging from one-half grown flower buds to 40-day old immature green bolls.
    • Evaluation of a Calcium-Based Soil Conditioner in Irrigated Cotton

      Silvertooth, J. C.; Norton, E. R.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 2001)
      A two site evaluation of a calcium (Ca²⁺)-based soil conditioner was conducted during the 1999 cotton season. The two locations included one at the Maricopa Agricultural Center (MAC) in Maricopa, AZ and the other was on a grower-cooperator field in Tacna, AZ. Both studies involved the use of CN-9, a Ca-nitrate solution with 9% nitrogen and 11% Ca. At MAC theCN-9 solution was sprayed over the seedbed post planting but prior to the first water-up irrigation. At the Tacna site CN-9 was applied in a sidedress application at planting. Routine plant measurements were taken throughout the duration of both studies and lint yield estimates were made at each location at the end of the season. No significant differences due to the application of CN-9 were detected in any data collected.
    • Nitrogen Management Experiments For Upland and Pima Cotton, 2000

      Silvertooth, J. C.; Norton, E. R.; Galadima, A.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 2001)
      Two field experiments were conducted in Arizona in 2000 at two locations (Maricopa and Marana). The Maricopa experiment has been conducted for nine consecutive seasons; the Marana site was initiated in 1994. The purposes of the experiments were to validate and refine nitrogen (N) fertilization recommendations for Upland cotton. The experiments each utilized N management tools such as pre-season soil tests for NO₃⁻-N, in-season plant tissue testing (petioles) for N fertility status, and crop monitoring to ascertain crop fruiting patterns and crop N needs. At each location, treatments varied from a conservative to a more aggressive approach of N management. Results at each location revealed a strong relationship between the crop fruit retention levels and N needs for the crop. This pattern was further reflected in final yield analysis as a response to the N fertilization regimes used. The higher, more aggressive, N application regimes did not benefit yields at any location. In 2000, fruit retention levels were good and crop vigor was not excessive. The more conservative, feedback approach to N management provided optimum yields at both locations.
    • Relative Susceptibility of Whiteflies to Danital® + Orthone® Over a 5-year Period

      Castle, S. J.; Ellsworth, P. C.; Prabhaker, N.; Toscano, N. C.; Henneberry, T. J.; Silvertooth, Jeff; USDA-ARS Western Cotton Research Laboratory, Phoenix; The University of Arizona, Department of Entomology & Maricopa Agricultural Center; University of California, Riverside, Department of Entomology (College of Agriculture, University of Arizona (Tucson, AZ), 2001)
      As part of a program to assess differences in susceptibility to insecticides among regional populations of Bemisia tabaci, insecticide resistance monitoring was carried out at the Maricopa Agricultural Center from fall, 1995 through 1999. Monitoring efforts were concentrated on Danitol®+Orthene® following reports of control problems and documentation of resistance to this mixture in 1995. We were interested in the longer-term dynamics of resistance in light of radically altered treatment regimens beginning with the use of IGRs in 1996. Although the frequency of susceptible individuals to Danitol+Orthene tended to increase in the later years, highly resistant individuals were still present 5 years after the resistance episode of 1995. Whitefly adults collected from various insecticide treatment plots other than Danitol+Orthene were generally uniform in their responses from the time of initial whitefly infestation until defoliation. However, a dramatic shift in susceptibility occurred following a single application of Danitol+Orthene in 1997 and 1999. The increased frequency of resistant individuals following treatment suggests that any large scale return to the use of Danitol+Orthene could rapidly select for proportionally higher numbers of resistant whiteflies and perhaps reduced control in cotton fields.
    • Arizona's Multi-agency Resistance Management Program for Bt Cotton: Sustaining the Susceptibility of Pink Bollworm

      Sims, Maria A.; Dennehy, Timothy J.; Patin, Amanda; Carrière, Yves; Liu, Yong-Biao; Tabashnik, Bruce; Antilla, Larry; Whitlow, Mike; Silvertooth, Jeff; Department of Entomology, The University of Arizona, Tucson, AZ; Arizona Cotton Research and Protection Council, Phoenix, AZ (College of Agriculture, University of Arizona (Tucson, AZ), 2001)
      Bt cotton has been used in Arizona since 1996 with exceptionally positive results in terms of economic returns to growers and reductions in insecticide use in cotton. Yet, the isolation of pink bollworm highly resistant to Bt cotton from collections made in Arizona in 1997 demonstrated the seriousness of the threat that resistance poses to transgenic Bt technology. For this reason unparalleled measures have been taken to detect and manage resistance of pink bollworm to Bt cotton in Arizona. This paper presents results of statewide monitoring of pink bollworm susceptibility to the Bt toxin, Cry1Ac, conducted from 1997 to 1999. Mean susceptibility of Arizona pink bollworm to Cry1Ac increased from 1997 to 1999. Mean corrected mortality in 1μg/ml Cry1Ac assays was 52.3% in 1997, 90.6% in 1998, and 97.9% in 1999. Mean corrected mortality in bioassays of 10 μg/ml was 94.5% in 1997, 99.8% in 1998, and 100% in 1999. Selection with Cry1Ac in the laboratory has produced from 1997 field collections a strain possessing 200 to 900-fold resistance to Cry1Ac. This resistant strain is capable of surviving on Bt cotton. We provide an overview of other components of the multi-agency collaboration to sustain efficacy of Bt cotton in Arizona. These include: 1) evaluation of the field performance of Bt cotton; 2) mapping and analysis of use of Bt and non-Bt cotton and compliance with refuge requirements; 3) effectiveness of internal versus external refuges and movement of pink bollworm moths from refuges; and 4) activities of the Arizona Bt Cotton Working Group to formulate and implement effective resistance management strategies.
    • Soil and Plant Recovery of Labeled Fertilizer Nitrogen in Irrigated Cotton

      Silvertooth, J. C.; Navarro, J. C.; Norton, E. R.; Galadima, A.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 2001)
      Proper timing of fertilizer N applications in relation to crop uptake can serve to improve fertilizer efficiency in irrigated cotton. Earlier research has identified an optimum application window extending from the formation of first pinhead squares to peak bloom, which corresponds well with maximum crop uptake and utilization. Field experiments were conducted at the University of Arizona Marana Agricultural Center (Grabe clay loam soil) utilizing sidedress applications of ammonium sulfate with 5-atom % 15-N at pinhead square, early bloom, and peak bloom at a rate of 56 kg N/ha. The objective was to compare relative efficiencies in terms of fertilizer N uptake and recovery among these three times of application. Results indicate that all treatments averaged approximately 80% total fertilizer N recovery. Of the fertilizer N that was recovered, approximately 40 % was taken up by the plants and 60 % recovered in the soil, primarily in the top 60 cm of the soil profile.
    • Summary of Nitrogen Management Experiments in Irrigated Cotton

      Silvertooth, J. C.; Norton, E. J.; Norton, E. R.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 2001)
      A series of nitrogen management experiments have been conducted over the past 11 years around the state to develop and refine fertilizer nitrogen (N) recommendations for irrigated desert cotton production. Stability analysis was used to summarize the data and to determine which of the four treatment regimes is most stable over a range of environments. Results indicate that the feedback treatment (treatment 3) was the most stable treatment for both Upland and Pima cottons and provided the best probability for a higher yield under high yielding environments. The untreated control treatment (treatment 1) was the least stable over a wide range of environments. These results further validate the ‘feedback’ approach to management of fertilizer N.
    • Silverleaf Whitefly Studies: Effects of Trichome Density and Leaf Shape

      Chu, C. C.; Natwick, E. T.; Henneberry, T. J.; Nelson, D. R.; Buckner, J. S.; Freeman, T. P.; Silvertooth, Jeff; USDA, ARS, WCRL, Phoenix, AZ (College of Agriculture, University of Arizona (Tucson, AZ), 2001)
      We examined nine upland cotton cultivars in 2000 to determine silverleaf whitefly (SLW)-cotton leaf trichome relationships. The hairy leaf cultivar Stoneville 474 had significantly higher numbers of SLW eggs, nymphs and adults compared to eight other smooth leaf cotton cultivars. The top young leaves on main stem terminals had fewer SLW eggs, nymphs and adults, but higher numbers of trichomes compared with older leaves. Among the eight smooth leaf cultivars, the four okra leaf cultivars as a group had fewer SLW eggs, nymphs and adults compared with the four normal leaf cultivars.
    • Insecticide Evaluation Studies, Safford Agricultural Center, 1999-2000

      Clark, L. J.; Carpenter, E. W.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 2001)
      Three studies were conducted over the two year period to explore the effectiveness of using pyrethroid insecticides only vs. rotating insecticide chemistries between the pyrethroids and organophosphates on both long and short staple cotton varieties. These same treatments were also evaluated over Bt and non-Bt varieties. In the worst case scenario, where weather conditions prevented timely application of insecticides and effectiveness of insecticides applied, long staple cotton yielded around 1/3 bale per acre after six insecticide applications. Within 200 feet of this experiment, during the same cropping season, with the same insecticides applied, DP 90B (a Bt variety) produced 3 bales per acre. Details of these studies are contained in this report.
    • Soil Amendment Study on Long and Short Staple Cotton, Safford Agriculture Center, 2000

      Clark, L. J.; Carpenter, E. W.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 2001)
      Two soil amendments, Agriblend Plus and Superfloc A-836, were applied to cotton beds prior to planting at rates of 5, 10, 15 and 20 pounds per acre, incorporated and planted to short staple (DP 655BR) or long staple (HTO) cotton. The experimental plots were fertilized, irrigated and managed in a manner to produce optimal cotton yields. No statistically significant yield increases were seen from any of the treatments, even though a few interesting trends were observed. The report contains observations on plant mapping and lint quality data, in addition to yield data.
    • Cotton Aphid Biology and Honydew Production

      Henneberry, T. J.; Forlow Jech, L.; Silvertooth, Jeff; USDA-ARS, Western Cotton Research Laboratory, Phoenix, AZ (College of Agriculture, University of Arizona (Tucson, AZ), 2001)
      Cotton aphid, Aphis gossypii Glover, fecundity, nymph development and honeydew production were studied in the laboratory. Apterous adult females produced an average of 1.7 nymphs per day and the nymphs (four instars) developed to adults in an average of 4.1 days at 26.7° C in the laboratory. Average longevity of adults was 16.1 days. More honeydew drops were produced by one-day old nymphs than three- or four-day old nymphs. Numbers of honeydew drops produced on a day to day basis were highly variable and did not show a distinct pattern of production. More honeydew drops, sugars and progeny were produced by adults at 26.7° C compared with 15.6 or 32.2° C. Increasing times of exposure of clean cotton lint to aphids and the resulting increasing amounts of honeydew sugars under laboratory and field conditions were significantly related to increasing cotton lint stickiness as measured with a thermodetector.
    • Effects of High Frequency Irrigation on Irrigation Uniformity III

      Martin, E. C.; Laine, G.; Sheedy, M.; Silvertooth, Jeff; University of Arizona, Cooperative Extension (College of Agriculture, University of Arizona (Tucson, AZ), 2001)
      Data was collected for a third season to determine the effects of high frequency irrigation on irrigation uniformity in cotton production. The past two seasons indicated that high frequency irrigation worked better on sandier soils than soils containing high clay contents. Although no significant differences were found, higher yields were obtained on a site with a relatively high sand content. A field located at the Maricopa Agricultural Center was split into two treatments. Treatment 1 was irrigated at approximately 35% depletion of available water in the plant rootzone. Treatment 2 was irrigated at approximately 50% depletion in the crop rootzone. Although the yield data from Treatment 1 was higher on the average, statistically, there was no difference between the two treatments.
    • Evaluation of a Drip Vs. Furrow Irrigated Cotton Production System

      Norton, E. R.; Silvertooth, J. C.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 2001)
      A newly installed subsurface drip system was compared to a conventional furrow-irrigated cotton production system in the Marana Valley in 2000. Regular measurements included soil moisture, flower tagging, general plant growth and development measurements, and lint yield. Results indicate that an increase in lint yield of approximately 250 lbs. lint/acre was obtained under the drip irrigation system. Approximately 1/3 less irrigation water was used under the drip irrigation system. Pounds of lint produced per acre-inch of water applied provide the most dramatic results. In the furrow-irrigated system approximately 25 lbs. of lint was produced per inch of water applied while the drip system ranged from 70-80.