• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Mechanisms of malignant transformation of human urothelial cells by monomethylarsonous acid

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_11652_sip1_m.pdf
    Size:
    3.317Mb
    Format:
    PDF
    Download
    Author
    Wnek, Shawn Michael
    Issue Date
    2011
    Keywords
    DNA damage
    DNA repair
    monomethylarsonous acid
    Pharmacology & Toxicology
    arsenic
    bladder cancer
    Advisor
    Gandolfi, A. Jay
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Sources of arsenic exposure include air, water, and food from both natural and anthropogenic sources. Arsenic is categorized as a human carcinogen, and is associated with pleiotropic toxicities including cancers of the skin, lung, and bladder. Despite arsenic's long recognition as a human carcinogen, the exact mechanisms of arsenical-induced carcinogenesis are unknown. Arsenic exposure has been shown to cause DNA damage. However, because arsenic does not directly react with DNA, genotoxicity is generally considered to result from indirect mechanisms. The generation of arsenical-induced reactive oxygen species and the inhibition of critical DNA repair systems are believed to contribute to arsenical-induced carcinogenicity. The DNA damaging effects of arsenical exposure and alterations in DNA repair processes were examined within the human bladder urothelial cell line, UROtsa, following continuous exposure to the arsenic metabolite, monomethylarsonous acid [MMA(III)]. Chronic, low-level MMA(III) exposure results in the induction of DNA damage that remains elevated following the removal of MMA(III). Furthermore, data presented herein, defines the critical period in which continuous low-level MMA(III) exposure causes the malignant transformation of the UROtsa cell line. Results indicate that malignant transformation of UROtsa cells is irreversible following 12 wk of low-level MMA(III) exposure. Assessment of the MMA(III)-induced biological alterations leading to the malignant transformation of UROtsa cells following 12 wk of exposure suggest two potential interdependent mechanisms in which MMA(III) may increase the susceptibility of UROtsa cells to genotoxic insult and/or malignant transformation. These mechanisms include MMA(III)-induced DNA damage via the production of reactive oxygen species and the MMA(III)-induced inhibition of poly(ADP-ribose) polymerase-1 as a result of the direct MMA(III)-mediated displacement of zinc.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Pharmacology & Toxicology
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.