Distribution Parameters of Dendroctonus frontalis in a Georgia Landscape
Author
Christel, Lynne M.Issue Date
2011Advisor
Guertin, David P.
Metadata
Show full item recordPublisher
The University of Arizona.Rights
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.Abstract
A three-phase study was performed to examine abiotic and biotic metrics at southern pine beetle infestation sites in northern Georgia in 2002 to find early indicators that can be leveraged by forest managers to mitigate the effects of future outbreaks: creation of a 2003 Final Impact Map, determining if MODIS MOD13Q1 EVI 16-day image composites can distinguish differences in biomass indicators among healthy and infested loblolly pine and hardwood forests, and creation of an Infestation Risk Map derived from significant climate and physical variables at known infestation sites.Three land cover classification techniques (change vector analysis, enhanced wetness differencing index and standard land cover classification analysis of Landsat 5 TM) were compared to determine which would provide the best estimate of final infestation damage. Classification accuracy results indicated that the latter provided the most reliable site damage information and it became the reference map against which outbreak model results were compared.Using time series analysis of MODIS composites acquired March 2000 - December 2006 to measure 11 phenology metrics for infested and healthy loblolly and hardwood stands showed that the imagery differentiated between forest classes. Results indicated the lowest base vegetation biomass in 2001 for infested loblolly, relative to healthy loblolly, with many metrics trending towards hardwood values following infestation.Abiotic influences included those related to landscape position and climate. Statistical testing showed increased beetle success: 1) along ridge tops at maximum solar exposure, 2) in areas with canopy density>60%, 3) in areas experiencing cooler summers and warmer winters, and 4) where precipitation was significantly lower at infested sites in the 2 years preceding outbreak.The Infestation Risk Map was developed from significant physical and climate indicator variables using the fuzzy theory modeling approach. Comparison of model output to infestation sites resulted in Chi-squared and Cramér's V values of 55.4 and 0.16, respectively, indicating that infestation risk distributions strongly paralleled site infestation. Comparison of model output and low, medium and high infestation density clusters resulted in Chi-squared and Cramér's V values of 241.24 and 0.66, respectively, indicating a more substantive relationship between infestation density and risk classes.Type
textElectronic Dissertation
Degree Name
Ph.D.Degree Level
doctoralDegree Program
Graduate CollegeNatural Resources