• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    ADAPTIVE ONLINE PERFORMANCE AND POWER ESTIMATION FRAMEWORK FOR DYNAMIC RECONFIGURABLE EMBEDDED SYSTEMS

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_11775_sip1_m.pdf
    Size:
    3.921Mb
    Format:
    PDF
    Download
    Author
    Mu, Jingqing
    Issue Date
    2011
    Keywords
    online estimation
    performance and power estimation
    Electrical & Computer Engineering
    adaptable systems
    dynamically reconfigurable embedded systems
    Advisor
    Lysecky, Roman
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Runtime dynamic reconfiguration of field-programmable gate arrays (FPGAs) and devices incorporating microprocessors and FPGA has been successfully utilized to increase performance and reduce power consumption. While previous methods have been successful, they typically do not consider the runtime behavior of the application that can be significantly affected by variations in data inputs, user interactions, and environmental conditions. In this dissertation, we present a dynamically reconfigurable system and design methodology that optimizes performance and power consumption by determining which coprocessors to implement with an FPGA based upon the current application behavior.For dynamically reconfigurable systems, in which the selection of hardware coprocessors to implement within the FPGA is determined at runtime, online estimation methods are essential to evaluate the performance and power consumption impact of the hardware coprocessor selection. We present a base profile assisted online system-level performance and power estimation framework for estimating the speedup and power consumption of dynamically reconfigurable embedded systems.Importantly though, complex interactions between multiple application tasks, non-deterministic execution behavior, and effects of operating system scheduling introduce significant challenges. To address these, we further present an adaptive online performance and power estimation framework suing kernel speedup coefficient adaptation that monitors and adapts the changing application and system behavior for multitasked applications. By exhaustively examining predefined voltage and frequency settings for the microprocessor and hardware kernels, the potential speedup and power reduction can be effectively estimated for each configuration and voltage/frequency settings. These estimates can be utilized to determine the optimal system configuration. At the same time, the kernel speedup coefficients for each kernel can be dynamically updated to account for the difference between the estimated and actual performance measured at runtime.Finally, in order to quickly determine kernel selection and voltage and frequency settlings, we present an efficient, online heuristic performance and power estimation framework that significantly decreases execution time at the cost of a small increase in power consumption. This online heuristic estimation framework achieves significant power reduction compared to software only implementation without performance degradation.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Electrical & Computer Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.