• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Electron-electron correlations and lattice frustration in quasi-two-dimensional systems

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_11763_sip1_m.pdf
    Size:
    4.218Mb
    Format:
    PDF
    Download
    Author
    Li, Hongtao
    Issue Date
    2011
    Keywords
    layered cobaltates
    organic charge transfer solids
    superconductivity
    Physics
    e-e correlations
    lattice frustration
    Advisor
    Mazumdar, Sumit
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Strong electron-electron correlations and lattice frustration are two physical interactions that pose serious challenges to condensed matter physics. A variety of exotic physical phenomena, for example, charge ordering, spin liquid, and unconventional superconductivity, are believed to arise from the interplay of the two interactions. In this dissertation, I examine two families of systems which exhibit both electron-electron correlations and lattice frustration – charge transfer solids and layered cobaltates. The half-filled band Hubbard model on the triangular lattice has been proposed by mean-field theories as the minimal model for the superconductivity in the charge transfer solids. In the first part of this dissertation, by using exact calculations, I prove the absence of superconductivity in this model. This result calls for a new theoretical approach to describe the rich physics in charge transfer solids. In the second part of this dissertation, I study charge transfer solids by focusing on its real bandfilling ¼. I show that a new kind of insulating phase, paired electron crystal, emerges from antiferromagnetism as the frustration is increased. The paired electron crystal state can explain the various insulating states adjacent to the superconducting state, thus provides a new avenue towards the understanding of the unconventional superconductivity in charge transfer solids and other ¼ filled systems. In the third part of this dissertation, I investigate the carrier concentration-dependent electronic behavior in layered cobaltates. I provide a natural yet simple explanation for this behavior. I show that it can be described within correlated-electron Hamiltonians with finite on-site and significant nearest neighbor hole-hole Coulomb repulsions. I also point out the similarities between organic charge transfer solids and layered cobaltates, which may involve superconductivity.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Physics
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.