• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Efficient Geometric Algorithms for Wireless Networks

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_11889_sip1_m.pdf
    Size:
    2.217Mb
    Format:
    PDF
    Download
    Author
    Sankararaman, Swaminathan
    Issue Date
    2011
    Keywords
    Computer Science
    Advisor
    Efrat, Alon
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Wireless communications has a wide range of applications including cellular telephones, wireless networking and security systems. Typical systems work through radio frequency communication and this is heavily dependent on the geographic characteristics of the environment. This dissertation discusses the application of geometric optimization in wireless networks where the communication \links" are not static but may be dynamically changing. We show how to exploit the geometric properties of these networks to model their behavior. In the first part of the dissertation, we consider the problem of interference-aware routing in Multi-channel mesh networks employing directional antennas to improve spatial throughput. In such networks, optimal routes are paths with a channel assignment for the links such that the path and link bandwidths are the same. We develop a method to perform topology control while taking into account interference by constructing a spanner; a sub-network containing O(n= θ) links, where n is the network size and θ is a tunable parameter, such that path costs increase by at most a constant factor. In second part, we study the problem of base-station positioning in Sensor Net- works such that we achieve energy-efficient data transmission from the sensors. Given the battery limitations of the sensors, our objective is to maximize the network lifetime. First, we present efficient algorithms for computing a transmission scheme given a fixed base-station and also provide a distributed implementation. Next, we present efficient algorithms for the problem of locating the base-station and simultaneously finding a transmission scheme. We compare our algorithms with linear-programming based algorithms through simulations. In the third part, we study strategies for managing friendly jammers to create virtual barriers preventing eavesdroppers from tapping sensitive RFID communication. Our scheme precludes the use of encryption. Applications domains include (i) privacy of inventory management systems, (ii) credit card communications, (iii) secure communication in any wireless networks without encryption. By carefully managing jammers producing noise, we show how to degrade the signal at eavesdroppers sufficiently, without jeopardizing network performance. We present algorithms targeted towards optimizing the number and power of jammers. Experimental simulations back up our results.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Computer Science
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.